Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887114

ABSTRACT

Intellectual development disorder (IDD) is characterized by a general deficit in intellectual and adaptive functioning. In recent years, there has been a growing interest in studying the genetic structure of IDD. Of particular difficulty are patients with non-specific IDD, for whom it is impossible to establish a clinical diagnosis without complex genetic diagnostics. We examined 198 patients with non-specific IDD from 171 families using whole-exome sequencing and chromosome microarray analysis. Hereditary forms of IDD account for at least 35.7% of non-specific IDD, of which 26.9% are monogenic forms. Variants in the genes associated with the BAF (SWI/SNF) complex were the most frequently identified. We were unable to identify phenotypic features that would allow differential diagnosis of monogenic and microstructural chromosomal rearrangements in non-specific IDD at the stage of clinical examination, but due to its higher efficiency, exome sequencing should be the diagnostic method of the highest priority study after the standard examination of patients with NIDD in Russia.


Subject(s)
Intellectual Disability , Child , Chromosome Aberrations , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microarray Analysis , Exome Sequencing
2.
Genes (Basel) ; 11(7)2020 07 19.
Article in English | MEDLINE | ID: mdl-32707643

ABSTRACT

Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a very rare recessive hereditary disorder. At the moment, ten CMS22 patients are described, with the disorder caused by nine different Loss-of-Function mutations and 14 gross deletions in the PREPL gene. The materials for our study were DNA samples of five family members: two patients with myasthenia, their healthy sibling and parents. Clinical exome analysis was carried out for one patient, then the whole family was checked for target variants with Sanger sequencing, quantitative multiplex ligation-dependent probe amplification, and chromosome 2 microsatellite markers study. To determine the functional significance of the splicing variant, we applied the minigene assay. The cause of the proband's disorder is a compound heterozygous state of two previously non-described pathogenic PREPL variants: a c.1528C>T (p.(Arg510Ter)) nonsense mutation and a c.2094G>T pseudo-missense variant, which, simultaneously with a p.(Lys698Asn) amino acid substitution, affects splicing, leading to exon 14 skipping in mRNA. The second patient's disorder was caused by a homozygous nonsense c.1528C>T (p.(Arg510Ter)) mutation due to maternal uniparental disomy (UPD) of chromosome 2. In this study, we describe a unique case, in which two siblings with a rare disorder have different pathologic genotypes.


Subject(s)
Genotype , Myasthenic Syndromes, Congenital/genetics , Prolyl Oligopeptidases/genetics , Child , Codon, Nonsense , Humans , Male , Myasthenic Syndromes, Congenital/pathology , Pedigree , RNA Splicing , Siblings , Uniparental Disomy
SELECTION OF CITATIONS
SEARCH DETAIL
...