Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37761855

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited disease with unknown mechanisms and a broad phenotypic spectrum. It is caused by pathogenic variants in the NOTCH3 gene. The symptoms of the disease mainly include recurrent strokes with vascular risk factors, migraine with aura, dementia, and mood disturbances. CASE PRESENTATION: Peripheral blood samples were collected from five patients from four unrelated families to extract genomic DNA. In four patients, analysis of exons 2, 3, 4, 5, 6 and adjacent intronic regions of the NOTCH3 gene was made via Sanger sequencing. Two previously undescribed nucleotide variants were identified in two patients: missense variant c.208G>T, (p.Gly70Cys) in exon 1 and splice-site variant c.341-1G>C in intron 3. Further DNA of two other patients were analyzed using a next-generation sequencing-based custom AmpliSeq™ panel for 59 genes associated with leukodystrophies. Two novel missense variants in the NOTCH3 gene were identified, c.1136G>A, (p.Cys379Tyr) in exon 7 and c.1547G>A, (p.Cys516Tyr) in exon 10. The pathogenic variant c.1547G>A, (p.Cys516Tyr) was confirmed in the fifth patient (family case) by Sanger sequencing. All patients had a history of headaches, transient ischemic attacks, memory impairment, and characteristics of MRI results. Three patients had strokes and two patients had psychiatric symptoms. CONCLUSION: We found four previously undescribed pathogenic variants in the NOTCH3 gene in five patients with CADASIL and described their clinical and genetic characteristics. These results expand the mutational spectrum of CADASIL.

2.
Mol Genet Metab Rep ; 32: 100889, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35782291

ABSTRACT

Introduction: Pathogenic variants in the pyruvate carboxylase (PC) gene cause a wide spectrum of recessive phenotypes, ranging from the early-onset fatal encephalopathy to the adult-onset benign form. Results: Patient 1 is a 6 y.o. boy with ataxia, hypoglycemia and episodes of lactic acidosis. WGS revealed the novel heterozygous missense variant c.1372A > G (p.Asn458Asp) in the PC gene. Additional analysis revealed discordant reads mapped to chromosomes 11 and 1, so a reciprocal translocation disrupted the PC gene was suspected. The translocation was validated via FISH-analysis and Sanger sequencing of its boundaries.Patient 2 is a 13 y.o. girl with psychomotor delay, episodes of lactic acidosis and ketonuria. WES revealed the novel homozygous intronic variant c.1983-116C > T. The PC's mRNA analysis demonstrated the exonization of several intron 16 sequences and some residual amount of WT mRNA isoform.Two other patients had more severe course of the disease. Their genotype represents missense variants in compound heterozygous and homozygous state (c.1876C > T (p.Arg626Trp), c.2606G > C (p.Gly869Ala), c.2435C > A (p.Ala812Asp). Conclusion: In patients with metabolic crises, lactic acidosis and hypoglycemia analysis of PC gene is recommended. WGS with deep bioinformatic analysis should be taken into consideration when none or the only one pathogenic variant in the PC gene is found.

3.
Mol Cytogenet ; 14(1): 41, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465353

ABSTRACT

Copy number gain 17 p13.3p13.1 was detected by chromosomal microarray (CMA) in a girl with developmental/speech delay and facial dysmorphism. FISH studies made it possible to establish that the identified genomic imbalance is the unbalanced t(9;17) translocation of maternal origin. Clinical features of the patient are also discussed. The advisability of using the combination of CMA and FISH analysis is shown. Copy number gains detected by clinical CMA should be confirmed using FISH analysis in order to determine the physical location of the duplicated segment. Parental follow-up studies is an important step to determine the origin of genomic imbalance. This approach not only allows a most comprehensive characterization of an identified chromosomal/genomic imbalance but also provision of an adequate medical and genetic counseling for a family taking into account a balanced chromosomal rearrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...