Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1611: 460605, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31662186

ABSTRACT

The petroleum industry is increasingly concerned with the conversion of vacuum residues as a consequence of decreased conventional crude oil availability. The compositional analysis of heavy oil products has become a key step in conversion processes, but the complexity of these oil matrices tends to increase with their boiling point. In this study, comprehensive two-dimensional liquid chromatography (LCxLC) coupled to inductively coupled mass spectrometry (ICP-MS/MS) is considered with a view to meet new requirements and to bring additional information regarding the species present in these matrices. In search for a high degree of orthogonality, two separation techniques involving two different retention mechanisms were evaluated: Size Exclusion Chromatography (SEC) and Reverse Phase Liquid Chromatography (RPLC). In SEC, the analytes are separated according to their molecular weight while according to their hydrophobicity in RPLC. The separation power of both individual separation techniques was first evaluated. Off-line and on-line LCxLC were compared on the basis of an optimization approach. It is shown that off-line SECxRPLC can provide, for the same analysis time of 150 min, a higher peak capacity (2600 vs 1700) than on-line RPLCxSEC while a similar dilution factor (close to 30) but also requires far fewer fractions to be analyzed (12 vs 400). Asphaltenes which constitute the heaviest fraction of crude oils (obtained from petroleum industry) were analyzed by the developed off-line SECxRPLC method. The resulting 2D-contour plots show that co-elutions could be removed leading, for the first time, to new information on high molecular weight species containing sulfur and vanadium.


Subject(s)
Chromatography, High Pressure Liquid/methods , Nickel/analysis , Petroleum/analysis , Sulfur/analysis , Tandem Mass Spectrometry/methods , Vanadium/analysis , Chromatography, Gel , Chromatography, Reverse-Phase , Hydrophobic and Hydrophilic Interactions , Polystyrenes/chemistry , Reference Standards
2.
J Chromatogr A ; 1603: 380-387, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31113532

ABSTRACT

Liquid chromatography (LC) coupled with a specific detection such as inductively coupled plasma-mass spectrometry (ICP-MS/MS) is a technique of choice for elementary speciation analysis for complex matrices. The analysis of organic matrices requires the introduction of volatile solvents into the plasma which is an analytical challenge for this coupling technique. Detection sensitivity can be significantly affected by instrumental limitations. Among those, we were interested in the solute dispersion into the interface located between LC and ICP-MS/MS. This interface consists in both a Sample Introduction System (SIS) and a possible flow splitter. This study, divided into two parts, investigated the analytical performance (in terms of sensitivity and efficiency) generated by the coupling of LC and ICP-MS in the specific case of organic matrices. In Part I [1], we previously discussed the impact of extra column dispersion on the performance of LC-ICP-MS, first from a theoretical point of view and next, by assessing extra-column dispersion in 55 published studies on LC-ICP-MS. It was shown that SIS was rarely optimized with respect to its contribution to extra-column band broadening. The critical impact of flow splitting on extra-column dispersion was also pointed out. The present Part II is dedicated to the experimental comparison of commercially available SIS by assessing extra-column band broadening and hence the contribution of SIS to the loss in both efficiency and sensitivity. It is shown that the peak variance, due to SIS, can vary from 10 to 8000 µL² depending on the combination of both nebulizer and spray chamber. Whereas the highest values (i.e. > 2000 µL²) are much too high in high performance liquid chromatography (HPLC), even the lowest values (i.e. < 100 µL²) can be inappropriate in ultra-high pressure liquid chromatography (UHPLC) as highlighted in this study. In light of these results, it appears that nebulizer and spray chamber have to be chosen together with respect to the chromatographic technique (HPLC or UHPLC) and that both peak dispersion and peak intensity depend on key parameters including SIS device geometry, flow rate entering the interface or spray chamber temperature.


Subject(s)
Chromatography, Liquid/methods , Spectrophotometry, Atomic/methods , Nebulizers and Vaporizers , Rheology , Solvents/chemistry , Temperature
3.
Environ Sci Pollut Res Int ; 26(8): 7980-7993, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30680687

ABSTRACT

The aim of the study was the biomonitoring of the chronic exposure to Pb by measuring its levels in blood, urine, and hair of battery workers. Blood lead (BPb), urinary lead (UPb), hair lead (HPb), and urinary δ-aminolevulinic acid (UALA) levels were determined for 52 workers in a battery plant and compared to those of 20 non-occupational exposed subjects (controls). BPb and UPb levels were determined by graphite furnace atomic absorption spectrometry (GFAAS). HPb levels were measured by triple quadrupole ICP-MS and UALA levels were determined using cation exchanger column. The measured levels were significantly higher compared to the controls exceeding the OSHA cutoff values (p < 0.01). The GM mean levels of BPb, UPb, UALA, and HPb of workers were 715 µg L-1, 331 µg L-1, 16.3 mg g-1, and 234 µg g-1, respectively. The GM mean levels of BPb, UPb, UALA, and HPb of controls were 93.6 µg L-1, 36.3 µg L-1, 1.9 mg g-1, and 1.8 µg g-1, respectively. Significant correlations were observed between BPb and UALA (r = 0.630, p = 0.000), UPb and UALA (r = 0.566, p = 0.000), and between BPb and HPb (r = 0.466, p = 0.004). The significant correlation between BPb and HPb suggests the usefulness of hair for assessing occupational exposure particularly when the study area presents medium to high levels of Pb pollution. The association between Pb biomarkers and potential confounding factors revealed significant influence of the occupational factor over smoking and alcohol consumption. The results of this study urge for the reinforcement of the implemented engineering controls and safety measures in order to reduce exposure and to address the health issues related to Pb poisoning.


Subject(s)
Environmental Pollutants/metabolism , Lead/metabolism , Occupational Exposure/analysis , Adult , Biomarkers/chemistry , Biomarkers/metabolism , Electric Power Supplies , Environmental Monitoring , Environmental Pollutants/analysis , Hair/chemistry , Humans , Lead/analysis , Male , Middle Aged , Spectrum Analysis , Tunisia
4.
Environ Monit Assess ; 190(12): 731, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30456579

ABSTRACT

Lead poisoning is a common disease in lead-acid battery manufacturing industries. Workers can be also exposed to various toxic elements present as contaminants or used as catalysts to enhance batteries' performances. In the present study, levels of essential and toxic elements and their relationship were assessed by analyzing scalp hair samples of 52 workers in a Pb battery manufacturing plant. The impact of some confounding factors on hair mineral contents was also investigated. For comparative purposes, nonoccupationally exposed subjects were selected as controls. All elements were determined by triple quadrupole ICP-MS. The results indicated significantly higher levels of Pb, Sb, As, and Cd in the hair of workers when compared to controls (p < 0.01). The Spearman correlation test revealed significant correlations between Pb/Cr, Pb/Mn, Pb/Ni, Pb/As, Pb/Se, Pb/Sb, Hg/As, Hg/Sn, Hg/Sb, Sb/Cr, Sb/As, Sb/Se, Sb/Cd, Sb/Sn, Sn/Cr, Sn/As, Sn/Cd, Cd/As, Se/Ni, As/Cr, Ni/Cr, Ni/Mn, and Mn/Cr in the hair of workers and Pb/Cr, Pb/Mn, Pb/Ni, Pb/Cd, Mn/Ni, Mn/Cd, Cd/Ni, As/Ni, Sn/Ni, Sb/Sn, and Hg/Sn in the hair of controls. Multiple linear regression analysis revealed linear dependence including Cr = f(Pb, Ni, Sb), Mn = f(Ni, Sb), Ni = f(Mn, Cr, -Cd) (Cd was negatively correlated, ß < 0), As = f(Sn, Sb, Hg), Se = f(Ni); Sn = f(As), Sb = f(As, Mn, -Hg, Sn, Se, -Ni) (Hg and Ni were negatively correlated), Hg = f(As, -Sb, Sn) (Sb was negatively correlated), and Pb = f(Cr). The result of this study can be very useful to explain the interactions between elements or for comparison studies when establishing reference ranges or monitoring elements in workplaces.


Subject(s)
Antimony/analysis , Arsenic/analysis , Cadmium/analysis , Environmental Monitoring/methods , Hair/chemistry , Lead/analysis , Occupational Exposure/analysis , Adult , Female , Humans , Male , Mass Spectrometry , Mercury/analysis , Middle Aged , Minerals/analysis , Multivariate Analysis , Reference Values , Regression Analysis , Scalp/chemistry , Spectrum Analysis , Trace Elements/analysis , Young Adult
5.
J Chromatogr A ; 1565: 68-80, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-29907414

ABSTRACT

Liquid chromatography (LC) hyphenated to a specific detection such as inductively coupled plasma-mass spectrometry (ICP-MS) is a technique of choice for elemental speciation analysis. However, various instrumental limitations may considerably reduce the expected sensitivity of the technique. Among those, we were interested by the solute dispersion into the interface located between LC and ICP-MS. The interface consists of a Sample Introduction System (SIS) and a possible flow-splitter prior to SIS. Flow splitting can be required in case of organic matrices to reduce the organic solvent amount entering plasma which may lead to plasma instabilities. Although extra-column dispersion is usually well taken into account with conventional UV detection it has been little studied in the context of LC-ICP-MS and moreover never quantified. Our objective is to assess the loss in column plates and hence in both separation quality and sensitivity which may be generated by the coupling of LC and ICP-MS in the specific case of organic matrices. In this first study, this is done (1) from a theoretical approach; (2) from 55 experimental studies reported in LC-ICP-MS and (3) from our experimental results highlighting the critical impact of the flow splitter on extra-column dispersion depending on both flow-rate and split ratio. It turns out by evaluating the 55 reported studies by means of theoretical calculations, that the loss in plates due to extra-column dispersion was most of the time beyond 50% and even often beyond 90%. Moreover, from our experiments, it has been shown that a very low split ratio (1:50) could generate an additional variance around 200 µL² which induces a loss in theoretical plate of 90% for ultra-high performance LC (UHPLC) column (5 cm × 2.1 mm, 1.7 µm).


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Models, Theoretical , Organic Chemicals/analysis , Spectrophotometry, Atomic/methods , Animals , Humans , Solvents/chemistry
6.
Environ Sci Pollut Res Int ; 25(10): 9207-9218, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28718023

ABSTRACT

It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 µg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to domestic discharges. Thanks to the SIPIBEL site, data obtained from this 2-year program are useful to evaluate the relevance of separate hospital wastewater treatment.


Subject(s)
Sewage/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Hospitals , Solid Phase Extraction , Surveys and Questionnaires , Tandem Mass Spectrometry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...