Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35914530

ABSTRACT

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Subject(s)
Neurogenesis , RNA Splicing , Alternative Splicing , Animals , Exons/genetics , Mammals , Mice , Neurogenesis/genetics , Neurons , RNA-Binding Proteins/genetics
2.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388412

ABSTRACT

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Subject(s)
Alternative Splicing/physiology , Genetic Engineering/methods , RNA Splice Sites/physiology , Animals , Autistic Disorder/genetics , CRISPR-Cas Systems/genetics , Cell Line , Exons/physiology , Humans , Mice , Nerve Tissue Proteins , Neurogenesis , Neurons , RNA Precursors/physiology , RNA Splicing/physiology , RNA-Binding Proteins , Ribonucleoproteins , Serine-Arginine Splicing Factors , Spliceosomes
3.
Mol Cell ; 72(1): 187-200.e6, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220560

ABSTRACT

Alternative splicing (AS) is a widespread process underlying the generation of transcriptomic and proteomic diversity and is frequently misregulated in human disease. Accordingly, an important goal of biomedical research is the development of tools capable of comprehensively, accurately, and efficiently profiling AS. Here, we describe Whippet, an easy-to-use RNA-seq analysis method that rapidly-with hardware requirements compatible with a laptop-models and quantifies AS events of any complexity without loss of accuracy. Using an entropic measure of splicing complexity, Whippet reveals that one-third of human protein coding genes produce transcripts with complex AS events involving co-expression of two or more principal splice isoforms. We observe that high-entropy AS events are more prevalent in tumor relative to matched normal tissues and correlate with increased expression of proto-oncogenic splicing factors. Whippet thus affords the rapid and accurate analysis of AS events of any complexity, and as such will facilitate future biomedical research.


Subject(s)
Alternative Splicing/genetics , Proteomics , RNA Splicing/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Humans , Molecular Sequence Annotation , RNA, Messenger/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...