Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 93(4): 1425-1441, 2023.
Article in English | MEDLINE | ID: mdl-37182881

ABSTRACT

BACKGROUND: In Alzheimer's disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. OBJECTIVE: Test the hypothesis that AIS structure is sensitive to xcTauOs. METHODS: Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. RESULTS: Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. CONCLUSION: xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau.


Subject(s)
Alzheimer Disease , Axon Initial Segment , Mice , Animals , Humans , Axon Initial Segment/metabolism , Axon Initial Segment/pathology , Axons/pathology , Neurons/metabolism , Alzheimer Disease/pathology , Hippocampus/pathology , Mice, Knockout , tau Proteins/genetics , tau Proteins/metabolism
2.
J Alzheimers Dis ; 71(4): 1125-1138, 2019.
Article in English | MEDLINE | ID: mdl-31524157

ABSTRACT

Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-ß oligomers (AßOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AßOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aß and tau at seminal stages of AD pathogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Protein Aggregation, Pathological , tau Proteins/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Binding Sites , Cells, Cultured , Humans , Intrinsically Disordered Proteins/metabolism , Mice , Microtubules/physiology , Neurons/physiology , Protein Folding , Unfolded Protein Response/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...