Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 23(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35328369

ABSTRACT

Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ's effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.


Subject(s)
Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Fatty Acids, Unsaturated/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Lipids/pharmacology , Temozolomide/pharmacology , Temozolomide/therapeutic use
2.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064646

ABSTRACT

Even though colorectal cancer (CRC) is one of the most preventable cancers, it is currently one of the deadliest. Worryingly, incidence in people <50 years has increased unexpectedly, and for unknown causes, despite the successful implementation of screening programs in the population aged >50 years. Thus, there is a need to improve early diagnosis detection strategies by identifying more precise biomarkers. In this scenario, the analysis of exosomes is given considerable attention. Previously, we demonstrated the exosome lipidome was able to classify CRC cell lines according to their malignancy. Herein, we investigated the use of the lipidome of plasma extracellular vesicles as a potential source of non-invasive biomarkers for CRC. A plasma exosome-enriched fraction was analyzed from patients undergoing colonoscopic procedure. Patients were divided into a healthy group and four pathological groups (patients with hyperplastic polyps; adenomatous polyps; invasive neoplasia (CRC patients); or hereditary non-polyposis CRC. The results showed a shift from 34:1- to 38:4-containing species in the pathological groups. We demonstrate that the ratio Σ34:1-containing species/Σ38:4-containing species has the potential to discriminate between healthy and pathological patients. Altogether, the results reinforce the utility of plasma exosome lipid fingerprint to provide new non-invasive biomarkers in a clinical context.


Subject(s)
Biomarkers, Tumor/blood , Colorectal Neoplasms/pathology , Exosomes/metabolism , Fatty Acids, Unsaturated/blood , Fatty Acids, Unsaturated/chemistry , Case-Control Studies , Colorectal Neoplasms/blood , Humans
3.
Cancers (Basel) ; 13(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802791

ABSTRACT

Even though colorectal cancer (CRC) is one of the most preventable cancers, it is one of the deadliest, and recent data show that the incidence in people <50 years has unexpectedly increased. While new techniques for CRC molecular classification are emerging, no molecular feature is as yet firmly associated with prognosis. Imaging mass spectrometry (IMS) lipidomic analyses have demonstrated the specificity of the lipid fingerprint in differentiating pathological from healthy tissues. During IMS lipidomic analysis, the formation of ionic adducts is common. Of particular interest is the [Na+]/[K+] adduct ratio, which already functions as a biomarker for homeostatic alterations. Herein, we show a drastic shift of the [Na+]/[K+] adduct ratio in adenomatous colon mucosa compared to healthy mucosa, suggesting a robust increase in K+ levels. Interrogating public databases, a strong association was found between poor diagnosis and voltage-gated potassium channel subunit beta-2 (KCNAB2) overexpression. We found this overexpression in three CRC molecular subtypes defined by the CRC Subtyping Consortium, making KCNAB2 an interesting pharmacological target. Consistently, its pharmacological inhibition resulted in a dramatic halt in commercial CRC cell proliferation. Identification of potential pharmacologic targets using lipid adduct information emphasizes the great potential of IMS lipidomic techniques in the clinical field.

4.
Cancers (Basel) ; 12(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443825

ABSTRACT

Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world. Despite the screening programs, its incidence in the population below the 50s is increasing. Therefore, new stratification protocols based on multiparametric approaches are highly needed. In this scenario, the lipidome is emerging as a powerful tool to classify tumors, including CRC, wherein it has proven to be highly sensitive to cell malignization. Hence, the possibility to describe the lipidome at the level of lipid species has renewed the interest to investigate the role of specific lipid species in pathologic mechanisms, being commercial cell lines, a model still heavily used for this purpose. Herein, we characterize the membrane lipidome of five commercial colon cell lines and their extracellular vesicles (EVs). The results demonstrate that both cell and EVs lipidome was able to segregate cells according to their malignancy. Furthermore, all CRC lines shared a specific and strikingly homogenous impact on ether lipid species. Finally, this study also cautions about the need of being aware of the singularities of each cell line at the level of lipid species. Altogether, this study firmly lays the groundwork of using the lipidome as a solid source of tumor biomarkers.

5.
Anal Bioanal Chem ; 411(30): 7935-7941, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31745610

ABSTRACT

The use of oversampling in MALDI (matrix-assisted laser desorption/ionization) imaging mass spectrometry (IMS) to improve lateral resolution is a common practice. However, its application is still controversial and recent studies reported a spot size-dependent change in the relative intensity of the spectra. Previously, using oversampling, we described the lipidome of the human colon epithelium, a 20-30 µm wide cell monolayer; even assessing the changes occurring within this monolayer associated with complex biological processes. Interestingly, the K-means analysis of those experiments unveiled the presence of a third epithelial cluster that anatomically matched the nuclei position. Taking into account the nucleus size (9-12 µm of diameter) and its distinctive lipidome, we decided to test whether this cluster was really of nuclear origin. Hence, the spectra obtained directly from tissue sections were compared with those recorded from the nuclei isolated from colon biopsies. The highest correlation coefficient was obtained when comparing the spectrum of the isolated nuclei with that of the tissue nuclear cluster, demonstrating the successful identification of the nuclear lipidome in the MALDI-IMS experiments run using oversampling and a lateral resolution of 10 µm/pixel. Importantly, it was established that phosphatidylinositol 38:4 nuclear levels remained stable along the colon crypt. That is, it mimicked neither the regular decrease observed in the epithelium nor the regular increase observed in the stroma, eliminating the chance of inter-pixel contamination. Altogether, besides confirming the usefulness of the oversampling technique, these results strongly reinforce the pivotal role IMS may have in promising fields such as single-cell analysis. Graphical abstract.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Subcellular Fractions/metabolism , Humans , Intestinal Mucosa/metabolism , Lipid Metabolism
6.
J Mol Biol ; 431(24): 5039-5062, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31422112

ABSTRACT

Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.


Subject(s)
Lipid Metabolism , Lipidomics , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Lipidomics/methods , Lipids/chemistry , Mass Spectrometry/methods , Membrane Lipids/metabolism , Metabolic Networks and Pathways , Metabolome , Molecular Imaging
7.
Acta Neurochir (Wien) ; 161(8): 1733-1741, 2019 08.
Article in English | MEDLINE | ID: mdl-31187267

ABSTRACT

BACKGROUND: 5-Aminolevulinic acid (5-ALA) has become an important assistant in glioblastoma (GB) surgery. Unfortunately, its price affects its widespread use. OBJECTIVE: The aim of this study was to compare commercial 5-ALA with the pharmacy-compounded solution. METHODS: Using first an in vitro experimental approach, different concentrations of the pharmacy-compounded solution and commercial 5-ALA were tested in U87MG, LN229, U373, and T98G commercial glioblastoma cell lines. Fluorescence intensity was compared for each concentration by flow cytometry. Mean fluorescence of culture supernatant and lysate samples were analyzed. In a second phase, both preparations were used for surgical glioblastoma resection and tumor samples were analyzed by confocal microscopy. Mean fluorescence intensity was analyzed for each preparation and compared. RESULTS: There was a high variability of fluorescence intensity between cell lines, but each cell line showed similar fluorescence for both preparations (compounded preparation and commercial 5-ALA). In the same way, both preparations had similar fluorescence intensity in glioblastoma samples. CONCLUSION: Both, compounded and commercial 5-ALA preparations produce equivalent fluorescent responses in human glioblastoma cells. Fluorescence intensity is cell line specific, but fluorescent properties of both preparations are undistinguishable.


Subject(s)
Aminolevulinic Acid/pharmacokinetics , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Photosensitizing Agents/pharmacokinetics , Aminolevulinic Acid/economics , Aminolevulinic Acid/standards , Cell Line, Tumor , Costs and Cost Analysis , Humans , Neurons/metabolism , Photosensitizing Agents/economics , Photosensitizing Agents/standards
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 928-938, 2018 08.
Article in English | MEDLINE | ID: mdl-29709709

ABSTRACT

Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono-/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research.


Subject(s)
Cell Dedifferentiation/physiology , Colon/physiology , Epithelial Cells/physiology , Intestinal Mucosa/physiology , Plasmalogens/metabolism , Adenocarcinoma/pathology , Adenomatous Polyps/pathology , Adult , Aged , Biopsy , Colon/cytology , Colon/pathology , Colonic Neoplasms/pathology , Colonoscopy , Epithelial Cells/pathology , Female , Healthy Volunteers , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Lipid Metabolism/physiology , Male , Middle Aged , Plasmalogens/analysis
9.
Biochim Biophys Acta ; 1861(12 Pt A): 1942-1950, 2016 12.
Article in English | MEDLINE | ID: mdl-27663183

ABSTRACT

Membrane lipids are gaining increasing attention in the clinical biomarker field, as they are associated with different pathologic processes such as cancer or neurodegenerative diseases. Analyzing human colonoscopic sections by matrix assisted laser/desorption ionization (MALDI) mass spectrometry imaging techniques, we identified a defined number of lipid species changing concomitant to the colonocyte differentiation and according to a quite simple mathematical expression. These species felt into two lipid families tightly associated in signaling: phosphatidylinositols and arachidonic acid-containing lipids. On the other hand, an opposed pattern was observed in lamina propria for AA-containing lipids, coinciding with the physiological distribution of the immunological response cells in this tissue. Importantly, the lipid gradient was accompanied by a gradient in expression of enzymes involved in lipid mobilization. Finally, both lipid and protein gradients were lost in adenomatous polyps. The latter allowed us to assess how different a single lipid species is handled in a pathological context depending on the cell type. The strict patterns of distribution in lipid species and lipid enzymes described here unveil the existence of fine regulatory mechanisms orchestrating the lipidome according to the physiological state of the cell. In addition, these results provide solid evidence that the cell lipid fingerprint image can be used to predict precisely the physiological and pathological status of a cell, reinforcing its translational impact in clinical research.


Subject(s)
Biomarkers/metabolism , Colon/metabolism , Colon/pathology , Lipids/physiology , Humans , Phosphatidylinositols/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
J Am Soc Mass Spectrom ; 27(2): 244-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26407555

ABSTRACT

Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na(+) adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na(+)/K(+) ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na(+) and K(+) adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results. Graphical Abstract ᅟ.


Subject(s)
Biomarkers/analysis , Lipids/analysis , Mass Spectrometry/methods , Necrosis/metabolism , Animals , Biomarkers/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Heterografts , Humans , Lipids/chemistry , Male , Mice, Nude , Phosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/analysis , Phosphatidylethanolamines/metabolism , Plasmalogens/analysis , Potassium/chemistry , Potassium/metabolism , Sodium/chemistry , Sodium/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Xenograft Model Antitumor Assays
11.
Anal Chem ; 88(1): 1022-9, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26607740

ABSTRACT

Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol.


Subject(s)
Antineoplastic Agents/pharmacology , Lipids/analysis , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Oleic Acids/pharmacology , Xenograft Model Antitumor Assays , Animals , Chromatography, High Pressure Liquid , Mass Spectrometry , Mice
12.
Anal Bioanal Chem ; 407(16): 4697-708, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25903024

ABSTRACT

Imaging mass spectrometry is becoming a reference technique in the field of lipidomics, due to its ability to map the distribution of hundreds of species in a single run, along a tissue section. The next frontier is now achieving increasing resolution powers to offer cellular (or even sub-cellular) resolution. Thus, the new spectrometers are equipped with sophisticated optical systems to decrease the laser spot to <30 µm. Here, we demonstrate that by using the correct matrix (i.e., a matrix that maximizes ion detection and forms small crystals) and a careful preparation, it is possible to achieve resolutions of ∼5-10 µm, even with spectrometers equipped with non-optimal optics, which produces laser spots of 50 µm or even larger. As a proof of concept, we present images of distributions of lipids, both in positive and negative ion mode, over human colon endoscopic sections, recorded using 2-mercaptobenzothiazole for positive ion mode and 2,5-diaminonaphtalene for negative ion mode and an LTQ-Orbitrap XL, equipped with a matrix-assisted laser desorption ionization (MALDI) source that produces astigmatic laser spots. Graphical Abstract Imaging mass spectrometry is becoming an invaluable technique to complement traditional histology, but still higher resolutions are required. Here we deal with such issue.


Subject(s)
Benzothiazoles/metabolism , Colon/metabolism , Lipid Metabolism , Naphthalenes/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Microscopy, Electron, Scanning
13.
J Lipid Res ; 54(5): 1457-65, 2013 May.
Article in English | MEDLINE | ID: mdl-23471028

ABSTRACT

The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor drug, involves the rapid and specific activation of sphingomyelin synthase (SMS), leading to a 4-fold increase in SM mass in tumor cells. In the present study, we investigated the source of the ceramides required to sustain this dramatic increase in SM. Through radioactive and fluorescent labeling, we demonstrated that sphingolipid metabolism was altered by a 24 h exposure to 2OHOA, and we observed a consistent increase in the number of lysosomes and the presence of unidentified storage materials in treated cells. Mass spectroscopy revealed that different sphingolipid classes accumulated in human glioma U118 cells after exposure to 2OHOA, demonstrating a specific effect on C16-, C20-, and C22-containing sphingolipids. Based on these findings, we propose that the demand for ceramides required to sustain the SMS activation (ca. 200-fold higher than the basal level) profoundly modifies both sphingolipid and phospholipid metabolism. As the treatment is prolonged, tumor cells fail to adequately metabolize sphingolipids, leading to a situation resembling sphingolipidosis, whereby cell viability is compromised.


Subject(s)
Glioma/metabolism , Oleic Acids/pharmacology , Sphingolipidoses/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Ceramides/metabolism , Ceramides/pharmacology , Glioma/pathology , Humans , Sphingolipidoses/chemically induced , Sphingolipidoses/pathology , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...