Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Biomed Sci ; 31(1): 27, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419051

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS: INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS: The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS: Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.


Subject(s)
Leukemia , RNA, Long Noncoding , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genomics , Leukemia/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
2.
Nat Genet ; 51(10): 1518-1529, 2019 10.
Article in English | MEDLINE | ID: mdl-31570891

ABSTRACT

RNA modifications are emerging as key determinants of gene expression. However, compelling genetic demonstrations of their relevance to human disease are lacking. Here, we link ribosomal RNA 2'-O-methylation (2'-O-Me) to the etiology of dyskeratosis congenita. We identify nucleophosmin (NPM1) as an essential regulator of 2'-O-Me on rRNA by directly binding C/D box small nucleolar RNAs, thereby modulating translation. We demonstrate the importance of 2'-O-Me-regulated translation for cellular growth, differentiation and hematopoietic stem cell maintenance, and show that Npm1 inactivation in adult hematopoietic stem cells results in bone marrow failure. We identify NPM1 germline mutations in patients with dyskeratosis congenita presenting with bone marrow failure and demonstrate that they are deficient in small nucleolar RNA binding. Mice harboring a dyskeratosis congenita germline Npm1 mutation recapitulate both hematological and nonhematological features of dyskeratosis congenita. Thus, our findings indicate that impaired 2'-O-Me can be etiological to human disease.


Subject(s)
Dyskeratosis Congenita/genetics , Epigenomics/methods , Germ-Line Mutation , Nuclear Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Ribosomal/genetics , Animals , Dyskeratosis Congenita/pathology , Gene Expression Profiling , Hematopoietic Stem Cells , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/chemistry , Nucleophosmin , RNA, Small Nucleolar , Transcriptome
3.
Science ; 364(6441)2019 05 17.
Article in English | MEDLINE | ID: mdl-31097636

ABSTRACT

Activation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.


Subject(s)
Anticarcinogenic Agents/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Anticarcinogenic Agents/therapeutic use , Carcinogenesis/drug effects , HEK293 Cells , Humans , Indoles/therapeutic use , Male , Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , Protein Multimerization , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects
4.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677511

ABSTRACT

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm , Genome, Human , RNA, Long Noncoding/genetics , Animals , Cytarabine/pharmacology , Female , Gene Expression Profiling , Gene Regulatory Networks , HEK293 Cells , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Mice , Pharmacogenetics , Proteins/genetics , RNA/analysis , RNA, Messenger/genetics , Signal Transduction
5.
Sci Rep ; 7(1): 7755, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798471

ABSTRACT

Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3' UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Models, Theoretical , PTEN Phosphohydrolase/genetics , RNA, Messenger/genetics , 3' Untranslated Regions , Cell Line, Tumor , Humans , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , Probability , RNA, Messenger/metabolism
6.
EMBO Mol Med ; 7(9): 1138-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26197802

ABSTRACT

Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development.


Subject(s)
Carcinogenesis/drug effects , DNA Replication/drug effects , Folic Acid/metabolism , Genomic Instability/drug effects , Oncogenes/drug effects , Animals , Mice
7.
Cell Mol Life Sci ; 71(23): 4495-506, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25297918

ABSTRACT

Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.


Subject(s)
Chromosome Fragile Sites , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genomic Instability , Neoplasms/genetics , Animals , DNA Damage , Humans
8.
Cancer Res ; 74(19): 5532-40, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25125661

ABSTRACT

Colorectal cancer develops in a sequential, evolutionary process, leading to a heterogenic tumor. Comprehensive molecular studies of colorectal cancer have been previously performed; still, the process of carcinogenesis is not fully understood. We utilized gene expression patterns from 94 samples including normal, adenoma, and adenocarcinoma colon biopsies and performed a coexpression network analysis to determine gene expression trajectories of 8,000 genes across carcinogenesis. We found that the majority of gene expression changes occur in the transition from normal tissue to adenoma. The upregulated genes, known to be involved in cellular proliferation, included c-Myc along with its targets. In a cellular model system, we show that physiologic upregulation of c-Myc can lead to cellular proliferation without DNA replication stress. Our analysis also found that carcinogenesis involves a progressive downregulation of genes that are markers of colonic tissue and propose that this reflects a perturbed differentiation of colon cells during carcinogenesis. The analysis of miRNAs targets pointed toward the involvement of miR17 in the regulation of colon cell differentiation. Finally, we found that copy-number variations (CNV) enriched in colon adenocarcinoma tend to occur in genes whose expression changes already in adenoma, with deletions occurring in genes downregulated and duplications in genes upregulated in adenomas. We suggest that the CNVs are selected to reinforce changes in gene expression, rather than initiate them. Together, these findings shed new light into the molecular processes that underlie the transformation of colon tissue from normal to cancer and add a temporal context that has been hitherto lacking.


Subject(s)
Carcinogenesis , Colorectal Neoplasms/genetics , Genes, myc , MicroRNAs/genetics , Transcription, Genetic , Cell Death/genetics , Cells, Cultured , Colorectal Neoplasms/pathology , Humans , Neovascularization, Pathologic/genetics
9.
EMBO Mol Med ; 6(5): 685-701, 2014 May.
Article in English | MEDLINE | ID: mdl-24705877

ABSTRACT

One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions.


Subject(s)
Codon, Nonsense , Gene Expression Regulation , Protein Biosynthesis , Unfolded Protein Response , Gene Regulatory Networks , Homeostasis , Humans , Nonsense Mediated mRNA Decay , Proteome/analysis
10.
Sci Rep ; 3: 2189, 2013.
Article in English | MEDLINE | ID: mdl-23852038

ABSTRACT

Genome instability is a hallmark of cancer. Common fragile sites (CFSs) are specific regions in the human genome that are sensitive to replication stress and are prone to genomic instability in different cancer types. Here we molecularly cloned a new CFS, FRA11H, in 11q13. The genomic region of FRA11H harbors a hotspot of chromosomal breakpoints found in different types of cancer, indicating that this region is unstable during cancer development. We further found that FRA11H is a hotspot for integrations of Murine Leukemia Virus (MLV)-based vectors, following CD34+ infections in vitro as well as ex-vivo during gene therapy trials. Importantly, we found that the MLV-based vector infection in-vitro leads to replication perturbation, DNA damage and increased CFS expression. This suggests that infection by MLV-based vectors leads to replication-induced genome instability, raising further concerns regarding the use of retroviral vectors in gene therapy trials.


Subject(s)
Chromosome Fragile Sites/genetics , DNA Replication , Genetic Vectors/genetics , Leukemia Virus, Murine/genetics , Virus Integration/genetics , Cell Line , Chromosomes, Human, Pair 11/genetics , DNA Breaks, Double-Stranded , Gene Order , Genomic Instability , Humans , Metaphase , Transfection
11.
Trends Genet ; 28(6): 295-302, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22465609

ABSTRACT

Common fragile sites (CFSs) were characterized almost 30 years ago as sites undergoing genomic instability in cancer. Recently, in vitro studies have found that oncogene-induced replication stress leads to CFS instability. In vivo, CFSs were found to be preferentially unstable during early stages of cancer development and to leave a unique signature of instability. It is now increasingly clear that, along the spectrum of replication features characterizing CFSs, failure of origin activation is a common feature. This and other features of CFSs, together with the replication stress characterizing early stages of cancer development, lead to incomplete replication that results in genomic instability preferentially at CFSs. Here, we review the shared and unique characteristics of CFSs, their underlying causes and their implications, particularly with respect to the development of cancer.


Subject(s)
Chromosome Fragile Sites , Genomic Instability , Neoplasms/genetics , Animals , Chromatin , DNA Replication , Humans
12.
Mol Cell ; 43(1): 122-31, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21726815

ABSTRACT

Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development.


Subject(s)
Chromosomal Instability , Chromosome Fragile Sites , Chromosomes/chemistry , DNA Replication/physiology , Models, Genetic , Replication Origin , Cell Line , Humans
13.
Cell ; 145(3): 435-46, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21529715

ABSTRACT

Chromosomal instability in early cancer stages is caused by stress on DNA replication. The molecular basis for replication perturbation in this context is currently unknown. We studied the replication dynamics in cells in which a regulator of S phase entry and cell proliferation, the Rb-E2F pathway, is aberrantly activated. Aberrant activation of this pathway by HPV-16 E6/E7 or cyclin E oncogenes significantly decreased the cellular nucleotide levels in the newly transformed cells. Exogenously supplied nucleosides rescued the replication stress and DNA damage and dramatically decreased oncogene-induced transformation. Increased transcription of nucleotide biosynthesis genes, mediated by expressing the transcription factor c-myc, increased the nucleotide pool and also rescued the replication-induced DNA damage. Our results suggest a model for early oncogenesis in which uncoordinated activation of factors regulating cell proliferation leads to insufficient nucleotides that fail to support normal replication and genome stability.


Subject(s)
Genomic Instability , Neoplasms/genetics , Nucleotides/biosynthesis , Cyclin E/metabolism , DNA Replication , E2F Transcription Factors/metabolism , Humans , Loss of Heterozygosity , Neoplasms/metabolism , Neoplasms/pathology , Nucleotides/metabolism , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/metabolism , Retinoblastoma Protein/metabolism , S Phase
14.
PLoS One ; 4(2): e4516, 2009.
Article in English | MEDLINE | ID: mdl-19223975

ABSTRACT

Non-Homologous End Joining (NHEJ) is one of the two major pathways of DNA Double Strand Breaks (DSBs) repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(D)J recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(D)J recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.


Subject(s)
DNA Repair Enzymes/genetics , DNA Replication , DNA-Binding Proteins/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , DNA Breaks, Double-Stranded , DNA Repair , DNA Repair-Deficiency Disorders/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...