Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Virus Res ; 347: 199421, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38942296

ABSTRACT

Respiratory syncytial virus (RSV) is the most predominant viral pathogen worldwide in children with lower respiratory tract infections. The Coronavirus disease 2019 (COVID-19) pandemic and resulting nonpharmaceutical interventions perturbed the transmission pattern of respiratory pathogens in South Africa. A seasonality shift and RSV resurgence was observed in 2020 and 2021, with several infected children observed. Conventional RSV-positive nasopharyngeal swabs were collected from various hospitals in the Free State province, Bloemfontein, South Africa, from children suffering from respiratory distress and severe acute respiratory infection between 2020 to 2021. Overlapping genome fragments were amplified and complete genomes were sequenced using the Illumina MiSeq platform. Maximum likelihood phylogenetic and evolutionary analysis were performed on both RSV-A/-B G-genes with published reference sequences from GISAID and GenBank. Our study strains belonged to the RSV-A GA2.3.2 and RSV-B GB5.0.5a clades. The upsurge of RSV was due to pre-existing strains that predominated in South Africa and circulating globally also driving these off-season RSV outbreaks during the COVID-19 pandemic. The variants responsible for the resurgence were phylogenetically related to pre-pandemic strains and could have contributed to the immune debt resulting from pandemic imposed restrictions. The deviation of the RSV season from the usual pattern affected by the COVID-19 pandemic highlights the need for ongoing genomic surveillance and the identification of genetic variants to prevent unforeseen outbreaks in the future.

2.
Virus Res ; 346: 199403, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776984

ABSTRACT

The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.


Subject(s)
Feces , Virome , Humans , South Africa , Infant , Longitudinal Studies , Feces/virology , Infant, Newborn , Gastrointestinal Microbiome , Male , Female , Viruses/classification , Viruses/isolation & purification , Viruses/genetics , Metagenomics , Gastrointestinal Tract/virology , Gastroenteritis/virology , Sapovirus/genetics , Sapovirus/isolation & purification , Sapovirus/classification , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/classification , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae/isolation & purification , Caliciviridae/genetics , Caliciviridae/isolation & purification , Caliciviridae/classification , Metagenome
3.
Diagnostics (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37443603

ABSTRACT

Monitoring of HIV drug resistance (HIVDR) remains critical for ensuring countries attain and sustain the global goals for ending HIV as a public health threat by 2030. On an individual patient level, drug resistance results assist in ensuring unnecessary treatment switches are avoided and subsequent regimens are tailored on a case-by-case basis, should resistance be detected. Although there is a disparity in access to HIVDR testing in high-income countries compared to low- and middle-income countries (LMICS), more LMICs have now included HIVDR testing for individual patient management in some groups of patients. In this review, we describe different strategies for surveillance as well as where HIVDR testing can be implemented for individual patient management. In addition, we briefly review available technologies for HIVDR testing in LMICs, including Sanger sequencing, next-generation sequencing, and some point-of-care options. Finally, we describe how South Africa has implemented HIVDR testing in the public sector.

4.
Nature ; 603(7902): 679-686, 2022 03.
Article in English | MEDLINE | ID: mdl-35042229

ABSTRACT

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Microbiol Resour Announc ; 10(39): e0063021, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34591669

ABSTRACT

We report the complete genome sequence of human papillomavirus type 18 isolated from a nasopharyngeal carcinoma in South Africa.

6.
PLoS One ; 16(8): e0252524, 2021.
Article in English | MEDLINE | ID: mdl-34432812

ABSTRACT

Human papillomavirus type 31, although detected less frequently than HPV types 16 and 18, is associated with head and neck squamous cell carcinomas. Previous studies suggest that polymorphisms in the long control region (LCR) may alter the oncogenic potential of the virus. This study reports the first complete genome of a South African HPV31 isolate from a laryngeal squamous cell carcinoma. Sequence variations relative to the HPV31 prototype sequence were identified. The pBlue-Topo® vector, a reporter gene system was used to investigate the possible influence of these variations on the LCR promoter activity in vitro. Using mutagenesis to create two different fragments, ß-galactosidase assays were used to monitor the effect of nucleotide variations on the p97 promoter. Increased ß-galactosidase expression was observed in mutants when compared to the South African HPV31 LCR isolate. Enhanced transcriptional activity was observed with the mutant that possessed a single nucleotide change within the YY1 transcription factor binding site. In conclusion, sequence variation within the LCR of HPV31 isolates may have a functional effect on viral p97 promoter activity.


Subject(s)
Genome, Viral , Head and Neck Neoplasms , Human papillomavirus 31 , Polymorphism, Single Nucleotide , Response Elements , Squamous Cell Carcinoma of Head and Neck , Viral Proteins , Animals , Cell Line , Cricetinae , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/virology , Human papillomavirus 31/genetics , Human papillomavirus 31/isolation & purification , Human papillomavirus 31/metabolism , Humans , Male , South Africa , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/virology , Viral Proteins/biosynthesis , Viral Proteins/genetics
8.
Wellcome Open Res ; 5: 113, 2020.
Article in English | MEDLINE | ID: mdl-33274299

ABSTRACT

Hepatitis B virus (HBV) viral load (VL) is used as a biomarker to assess risk of disease progression, and to determine eligibility for treatment. While there is a well recognised association between VL and the expression of the viral e-antigen (HBeAg) protein, the precise determinants and distribution of VL at a population level are not well described. We here report the distribution of HBV VL in two large cross-sectional population cohorts in the UK and in South Africa, demonstrating a consistent bimodal distribution. The right skewed distribution and low median viral loads are significantly different from the left-skew and higher viraemia in seen in comparable HIV and hepatitis C virus (HCV) cohorts. Using longitudinal data, we present evidence for a stable 'set-point' VL in peripheral blood during chronic HBV infection. These results are important to underpin improved understanding of HBV biology and to plan public health interventions.

9.
BMC Evol Biol ; 20(1): 153, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33187474

ABSTRACT

BACKGROUND: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world's tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. RESULTS: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63-5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensification of the cold Benguela current, which caused western aridification and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fluctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by different climatic parameters, and that the niches differed substantially among the clades of the northern group but were similar among clades of the southern group. CONCLUSION: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B-Ptr, Ptt-A and Pv-A.


Subject(s)
Genetic Speciation , Turtles , Africa, Southern , Animals , Ecosystem , Phylogeny , Phylogeography , Turtles/genetics
10.
Viruses ; 12(11)2020 11 05.
Article in English | MEDLINE | ID: mdl-33167516

ABSTRACT

Establishing a diverse gut microbiota after birth is essential for preventing illnesses later in life. However, little knowledge exists about the total viral population (virome) present in the gut of infants during the early developmental stage, with RNA viruses being generally overlooked. Therefore, this small pilot longitudinal study investigated the diversity and changes in the enteric RNA virome in healthy infants from South Africa. Faecal samples (n = 12) were collected from four infants at three time points (on average at 8, 13, and 25 weeks), and then sequenced on an Illumina MiSeq platform. The genomic analysis revealed a diverse population of human enteric viruses from the infants' stools, and changes in the enteric virome composition were observed over time. The Reoviridae family, more specifically the Rotavirus genus, was the most common and could be linked to viral shedding due to the administration of live-attenuated oral vaccines in South Africa, followed by the Picornaviridae family including parechoviruses, echoviruses, coxsackieviruses, enteroviruses, and polioviruses. Polioviruses were also linked to vaccine-related shedding. Astroviridae (astroviruses) and Caliciviridae (noroviruses) were present at low abundance. It is evident that an infant's gut is colonized by distinct viral populations irrespective of their health state. Further characterization of the human virome (with a larger participant pool) is imperative to provide more conclusive insights into the viral community structure and diversity that has been shown in the current study, despite the smaller sample size.


Subject(s)
Gastrointestinal Tract/virology , Metagenome , RNA, Viral/genetics , Virome , Cohort Studies , Feces/virology , High-Throughput Nucleotide Sequencing , Humans , Infant , Longitudinal Studies , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , South Africa
11.
PLoS Med ; 17(4): e1003068, 2020 04.
Article in English | MEDLINE | ID: mdl-32315297

ABSTRACT

BACKGROUND: International Sustainable Development Goals (SDGs) for elimination of hepatitis B virus (HBV) infection set ambitious targets for 2030. In African populations, infant immunisation has been fundamental to reducing incident infections in children, but overall population prevalence of chronic hepatitis B (CHB) infection remains high. In high-prevalence populations, adult catch-up vaccination has sometimes been deployed, but an alternative Test and Treat (T&T) approach could be used as an intervention to interrupt transmission. Universal T&T has not been previously evaluated as a population intervention for HBV infection, despite high-profile data supporting its success with human immunodeficiency virus (HIV). METHODS AND FINDINGS: We set out to investigate the relationship between prevalence of HBV infection and exposure in Africa, undertaking a systematic literature review in November 2019. We identified published seroepidemiology data representing the period 1995-2019 from PubMed and Web of Science, including studies of adults that reported prevalence of both hepatitis B surface antigen (HBsAg; prevalence of HBV infection) and antibody to hepatitis B core antigen (anti-HBc; prevalence of HBV exposure). We identified 96 studies representing 39 African countries, with a median cohort size of 370 participants and a median participant age of 34 years. Using weighted linear regression analysis, we found a strong relationship between the prevalence of infection (HBsAg) and exposure (anti-HBc) (R2 = 0.45, p < 0.001). Region-specific differences were present, with estimated CHB prevalence in Northern Africa typically 30% to 40% lower (p = 0.007) than in Southern Africa for statistically similar exposure rates, demonstrating the need for intervention strategies to be tailored to individual settings. We applied a previously published mathematical model to investigate the effect of interventions in a high-prevalence setting. The most marked and sustained impact was projected with a T&T strategy, with a predicted reduction of 33% prevalence by 20 years (95% CI 30%-37%) and 62% at 50 years (95% CI 57%-68%), followed by routine neonatal vaccination and prevention of mother to child transmission (PMTCT; at 100% coverage). In contrast, the impact of catch-up vaccination in adults had a negligible and transient effect on population prevalence. The study is constrained by gaps in the published data, such that we could not model the impact of antiviral therapy based on stratification by specific clinical criteria and our model framework does not include explicit age-specific or risk-group assumptions regarding force of transmission. CONCLUSIONS: The unique data set collected in this study highlights how regional epidemiology data for HBV can provide insights into patterns of transmission, and it provides an evidence base for future quantitative research into the most effective local interventions. In combination with robust neonatal immunisation programmes, ongoing PMTCT efforts, and the vaccination of high-risk groups, diagnosing and treating HBV infection is likely to be of most impact in driving advances towards elimination targets at a population level.


Subject(s)
Hepatitis B Antibodies/blood , Hepatitis B Vaccines/administration & dosage , Hepatitis B virus , Hepatitis B/blood , Hepatitis B/epidemiology , Africa/epidemiology , HIV Infections/blood , HIV Infections/epidemiology , HIV Infections/prevention & control , Hepatitis B/prevention & control , Humans , Seroepidemiologic Studies , Vaccination/methods
12.
Emerg Infect Dis ; 26(2): 385-387, 2020 02.
Article in English | MEDLINE | ID: mdl-31961316

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe disease with fatalities. Awareness of potential sources of infection is important to reduce risk to healthcare workers and contacts. We detected CCHFV RNA in formalin-fixed, paraffin-embedded tissues from a spontaneous abortion that were submitted for histology 9 weeks after a suspected CCHFV infection in the mother.


Subject(s)
Abortion, Spontaneous , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean/diagnosis , Pregnancy Complications, Infectious/diagnosis , Diagnosis, Differential , Female , Hemorrhagic Fever, Crimean/virology , Humans , Pregnancy , Pregnancy Complications, Infectious/virology , Prenatal Diagnosis , South Africa
13.
J Virol Methods ; 278: 113822, 2020 04.
Article in English | MEDLINE | ID: mdl-31954734

ABSTRACT

Reverse transcription-polymerase chain reaction (RT-PCR) is frequently used for surveillance and diagnosis of arboviruses and emerging viruses. A disadvantage of RT-PCR assays, especially nested assays, is the potential for false-positive results caused by laboratory contamination from either positive controls or positive samples. Positive reactors usually require sequence determination for confirmation which delay timeous reporting of a result. Thus, the aim of the study was to use a simple technique to prepare a positive control allowing true positives to be differentiated from laboratory contamination based on size differentiation for conventional PCR, or melt temperatures for real time assays. A flavivirus positive control and an alphavirus positive control were prepared for two RT-PCR assays that we are currently using for arbovirus surveillance in South Africa. Primers targeting a region of the partial genes of interest cloned in pGEM®T-easy were modified at the 5' ends with non-viral nucleotides. The resulting amplicons were circularised, resulting in pGEM®T-easy constructs with 51 and 65 non-viral bases inserted into the partial flaviviral and alphaviral genes respectively and used as template for transcribing RNA. Sequence analysis was used to confirm the manipulation of the partial genes. Using virus specific primer pairs, viral RNA could be readily differentiated from the modified positive controls either by size differentiation, or melt temperature in a SYBR®Green real time RT-PCR. This study demonstrates how simple recombinant technology can be used to produce a positive control that has application in the laboratory for surveillance studies or as a diagnostic tool using synthetic genes to abrogate the requirement for handling infectious virus.


Subject(s)
DNA Contamination , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Sindbis Virus/genetics , West Nile virus/genetics , DNA Primers/genetics , DNA, Recombinant , False Positive Reactions , RNA, Viral/isolation & purification , Sensitivity and Specificity
14.
Wellcome Open Res ; 5: 151, 2020.
Article in English | MEDLINE | ID: mdl-33869791

ABSTRACT

Background: Tenofovir (TFV) is a widely used treatment for chronic hepatitis B virus (HBV) infection. There is a high genetic barrier to the selection of TFV resistance-associated mutations (RAMs), but the distribution and clinical significance of TFV RAMs are not well understood. We here present assimilated evidence for putative TFV RAMs with the aims of cataloguing and characterising mutations that have been reported, and starting to develop insights into mechanisms of resistance. Methods: We carried out a systematic literature search in PubMed and Scopus to identify clinical, in vitro and in silico evidence of TFV resistance. We included peer-reviewed studies presenting original data regarding virological TFV breakthrough, using published methods to assess the quality of each study. We generated a list of RAMs that have been reported in association with TFV resistance, developing a 'long-list' (all reported RAMs) and a 'short-list' (a refined list supported by the most robust evidence). We assessed the potential functional and structural consequences by mapping onto the crystal structure for HIV reverse transcriptase (RT), as the structure of HBV RT has not been solved. Results: We identified a 'long-list' of 37 putative TFV RAMs in HBV RT, occurring within and outside sites of enzyme activity, some of which can be mapped onto a homologous HIV RT structure. A 'short-list' of nine sites are supported by the most robust evidence. If clinically significant resistance arises, it is most likely to be in the context of suites of multiple RAMs. Other factors including adherence, viral load, HBeAg status, HIV coinfection and NA dosage may also influence viraemic suppression. Conclusion: There is emerging evidence for polymorphisms that may reduce susceptibility to TVF. However, good correlation between viral sequence and treatment outcomes is currently lacking; further studies are essential to optimise individual treatment and public health approaches.

15.
Front Oncol ; 10: 619469, 2020.
Article in English | MEDLINE | ID: mdl-33643918

ABSTRACT

Breast cancer patients historically benefitted from population-based genetic research performed in South Africa, which led to the development of founder-based BRCA1/2 diagnostic tests. With the advent of next-generation sequencing (NGS) technologies, the clinical utility of limited, targeted genetic assays were questioned. The study focused on mining NGS data obtained from an extensive single-institution NGS series (n=763). The aims were to determine (i) the prevalence of the most common recurrent/founder variants in patients referred for NGS directly; and (ii) to explore the data for inferred haplotypes associated with previous and potential new recurrent/founder variants. The identification of additional founder variants was essential for promoting and potentially advancing to rapid founder-based BRCA1/2 point-of-care (POC) technology as a time- and cost-effective alternative. NGS revealed actionable BRCA1/2 variants in 11.1% of patients tested (BRCA1 - 4.7%; BRCA2 - 6.4%), of which 22.4% represented variants currently screened for using first-tier targeted genetic testing. A retrospective investigation into the overall mutation-positive rate for an extended cohort (n=1906), which included first-tier test results, revealed that targeted genetic testing identified 74% of all pathogenic variants. This percentage justified the use of targeted genetic testing as a first-tier assay. Inferred haplotype analysis confirmed the founder status of BRCA2 c.5771_5774del (rs80359535) and c.7934del (rs80359688) and revealed an additional African founder variant (BRCA2 c.582G>A - rs80358810). A risk-benefit analysis using a questionnaire-based survey was performed in parallel to determine genetic professionals' views regarding POC testing. This was done to bridge the clinical implementation gap between haplotype analysis and POC testing as a first-tier screen during risk stratification of breast and ovarian cancer patients. The results reflected high acceptance (94%) of BRCA1/2 POC testing when accompanied by genetic counselling. Establishing the founder status for several recurrent BRCA2 variants across ethnic groups supports unselected use of the BRCA POC assay in all SA breast/ovarian cancer patients by recent local and international public health recommendations. Incorporating POC genotyping into the planned NGS screening algorithm of the Department of Health will ensure optimal use of the country's recourses to adhere to the set standards for optimal care and management for all breast cancer patients.

16.
PLoS One ; 14(3): e0213241, 2019.
Article in English | MEDLINE | ID: mdl-30835760

ABSTRACT

INTRODUCTION: Phylogenetic analysis plays a crucial role in quality control in the HIV drug resistance testing laboratory. If previous patient sequence data is available sample swaps can be detected and investigated. As Antiretroviral treatment coverage is increasing in many developing countries, so is the need for HIV drug resistance testing. In countries with multiple languages, transcription errors are easily made with patient identifiers. Here a self-contained blastn integrated phylogenetic pipeline can be especially useful. Even though our pipeline can run on any unix based system, a Raspberry Pi 3 is used here as a very affordable and integrated solution. PERFORMANCE BENCHMARKS: The computational capability of this single board computer is demonstrated as well as the utility thereof in the HIV drug resistance laboratory. Benchmarking analysis against a large public database shows excellent time performance with minimal user intervention. This pipeline also contains utilities to find previous sequences as well as phylogenetic analysis and a graphical sequence mapping utility against the pol area of the HIV HXB2 reference genome. Sequence data from the Los Alamos HIV database was analyzed for inter- and intra-patient diversity and logistic regression was conducted on the calculated genetic distances. These findings show that allowable clustering and genetic distance between viral sequences from different patients is very dependent on subtype as well as the area of the viral genome being analyzed. AVAILABILITY: The Raspberry Pi image for PhyloPi, source code of the pipeline, sequence data, bash-, python- and R-scripts for the logistic regression, benchmarking as well as helper scripts are available at http://scholar.ufs.ac.za:8080/xmlui/handle/11660/7638 and https://github.com/ArmandBester/phylopi. The PhyloPi image and the source code are published under the GPLv3 license. A demo version of the PhyloPi pipeline is available at http://phylopi.hpc.ufs.ac.za/.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Infections/drug therapy , HIV/drug effects , Phylogeny , Software , Computational Biology , Databases, Factual , HIV/genetics , HIV Infections/genetics , HIV Infections/virology , Humans
17.
Emerg Infect Dis ; 24(7): 1360-1363, 2018 07.
Article in English | MEDLINE | ID: mdl-29912704

ABSTRACT

Crimean Congo hemorrhagic fever virus (CCHFV) is endemic in South Africa, but whether mild undiagnosed cases occur is unclear. In a seroepidemiologic survey, only 2 of 387 adults considered at risk because of occupational or recreational activities had evidence of previous infection. Seroprevalence in South Africa remains low within the groups investigated.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/immunology , Adolescent , Adult , Aged , Female , Geography, Medical , Hemorrhagic Fever, Crimean/virology , Humans , Immunoassay , Immunoglobulin G/immunology , Male , Middle Aged , Public Health Surveillance , Risk Factors , Seroepidemiologic Studies , South Africa/epidemiology , Young Adult
18.
J Med Virol ; 87(5): 717-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25693737

ABSTRACT

Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family with a tripartite, negative sense RNA genome. This study used predictive software to analyse the L (large), M (medium), and S (small) segments of 14 southern African CCHFV isolates. The OTU-like cysteine protease domain and the RdRp domain of the L segment are highly conserved among southern African CCHFV isolates. The M segment encodes the structural glycoproteins, GN and GC, and the non-structural glycoproteins which are post-translationally cleaved at highly conserved furin and subtilase SKI-1 cleavage sites. All of the sites previously identified were shown to be conserved among southern African CCHFV isolates. The heavily O-glycosylated N-terminal variable mucin-like domain of the M segment shows the highest sequence variability of the CCHFV proteins. Five transmembrane domains are predicted in the M segment polyprotein resulting in three regions internal to and three regions external to the membrane across the G(N), NS(M) and G(C) glycoproteins. The corroboration of conserved genome domains and sequence identity among geographically diverse isolates may assist in the identification of protein function and pathogenic mechanisms, as well as the identification of potential targets for antiviral therapy and vaccine design. As detailed functional studies are lacking for many of the CCHFV proteins, identification of functional domains by prediction of protein structure, and identification of amino acid level similarity to functionally characterised proteins of related viruses or viruses with similar pathogenic mechanisms are a necessary step for selection of areas for further study.


Subject(s)
Genetic Variation , Genome, Viral , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/genetics , RNA, Viral/genetics , Africa, Southern , Conserved Sequence , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Humans , Models, Molecular , Nucleic Acid Conformation , Viral Proteins/genetics
19.
FEMS Microbiol Lett ; 302(2): 182-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20132311

ABSTRACT

The transition metal iron is an important element for the sustenance of life--it can function either as an electron acceptor or as a donor and serves as a cofactor in many enzymes activities. The cytoplasmic NAD(P)H-dependent ferric reductase in Thermus scotoductus SA-01 shares high sequence and structural similarity to prokaryotic thioredoxin reductases. Here we report the sequence of the ferric reductase (which is typically annotated as a thioredoxin reductase-like protein) and a comparative kinetic study with the thioredoxin reductase from SA-01. Structurally, the most noteworthy difference, immediately apparent from the protein sequence, is the absence of the disulphide redox centre in the ferric reductase. This is the first report relating the attributes of such a redox protein to its ability to reduce a ferric substrate.


Subject(s)
FMN Reductase/genetics , FMN Reductase/metabolism , Thermus/enzymology , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Amino Acid Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Ferric Compounds/metabolism , Kinetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Thermus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...