Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Gastroenterology ; 159(3): 999-1014.e9, 2020 09.
Article in English | MEDLINE | ID: mdl-32450149

ABSTRACT

BACKGROUND & AIMS: Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS: We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS: Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced ß-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS: We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.


Subject(s)
Lipid Regulating Agents/pharmacology , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 1/agonists , Obesity/drug therapy , Animals , Antagomirs/administration & dosage , Benzamides/pharmacology , Benzamides/therapeutic use , Body Weight , Cell Line, Tumor , Datasets as Topic , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Humans , Insulin Resistance , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipid Regulating Agents/therapeutic use , Liver/drug effects , Liver/pathology , Male , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/blood , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Promoter Regions, Genetic/drug effects , Up-Regulation/drug effects
2.
Biochem Pharmacol ; 65(2): 209-17, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12504796

ABSTRACT

Metamizol is an analgesic and antipyretic agent that can induce agranulocytosis in certain patients. However, its effects on granulocyte viability and differentiation have been poorly evaluated. Here we analysed the effects of metamizol and its active metabolite, 4-methylaminoantipyrine (MAA), on the viability of HL60 promyelocytes and their dimethyl sulphoxide-induced differentiated granulocytes. Metamizol and MAA at 75 microM (above the peak of plasmatic concentration after 2g intake) did not alter granulocytic differentiation of HL60 cells. Only at concentrations above 100 microM, well over the pharmacological range, metamizol-induced apoptosis in about 30% of the HL60 promyelocytes, while HL60-granulocytic terminally differentiated cells were more resistant to this apoptotic action. When the effects of metamizol were compared with those of acetylsalicylic acid (ASA) and diclofenac on cell viability, at equivalent concentrations used in analgesic and antipyretic therapy (75 microM for metamizol, and ASA and 3 microM for diclofenac) their apoptotic effects were similar. Again, the HL60 promyelocytes were more sensitive to apoptosis than granulocytic differentiated cells, as measured by the percentage of sub-G(1) cells detected by flow cytometry and by determination of caspase activity as a function of poly(ADP-ribose) polymerase cleavage. Furthermore, when human blood-derived granulocytes were treated with metamizol, MAA, and ASA at 75 microM or diclofenac at 3 microM, less than 10% of apoptotic granulocytes were detected, whereas at toxicological/suprapharmacological concentrations (10mM), about 90% of granulocytes were apoptotic. These results demonstrate that metamizol, MAA, ASA, and diclofenac, at pharmacological concentrations, neither affect the granulocytic differentiation process nor induce relevant apoptosis on terminally differentiated granulocytes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Differentiation/drug effects , Dipyrone/pharmacology , Granulocytes/drug effects , Apoptosis , Aspirin/pharmacology , Cell Survival/drug effects , Diclofenac/pharmacology , Dimethyl Sulfoxide/pharmacology , Drug Interactions , Granulocytes/pathology , HL-60 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...