Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 196: 106422, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437777

ABSTRACT

Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.


Subject(s)
Ecosystem , Mytilidae , Animals , Biodiversity
2.
J Phycol ; 55(2): 297-313, 2019 04.
Article in English | MEDLINE | ID: mdl-30570145

ABSTRACT

A recent molecular taxonomic study along the Chilean coast (18° S-53° S) described 18 candidate species of bladed Bangiales of which only two were formally described. Few studies focused on local genetic and morphological diversity of bladed Bangiales and attempted to determine their intertidal distribution in contrasting habitats, and none were performed in Chile. To delimit intertidal distributions of genetic species, 66 samples of bladed Bangiales were collected at Maitencillo (32° S) in four zones: a rocky platform, a rocky wall, and two boulders zones surrounded by sandy and rocky bottoms, respectively. These samples were identified based on sequences of the mitochondrial COI and chloroplast rbcL markers. We also collected 87 specimens for morphological characterization of the most common species, rapidly assessing their putative species identity using newly developed species-diagnostic (PCR-RFLP) markers. Eight microscopic and two macroscopic morphological traits were measured. We described and named three of four species that predominate in Maitencillo (including Pyropia orbicularis): Pyropia variabilis Zapata, Meynard, Ramírez, Contreras-Porcia, sp. nov., Porphyra luchea Meynard, Ramírez, Contreras-Porcia sp. nov., and Porphyra longissima Meynard, Ramírez, Contreras-Porcia, sp. nov. With the exception of Po. longissima restricted to boulders surrounded by sandy bottom, and a morphotype of Py. variabilis restricted to rocky walls, the other species/morphotypes have overlapping intertidal distributions. Except for Po. longissima, which is clearly differentiated morphologically (longest and thinnest blades), we conclude that morphology is not sufficient to differentiate bladed Bangiales. Our findings underscore the importance of refining our knowledge of intrinsic and environmental determinants on the distribution of bladed Bangiales.


Subject(s)
Porphyra , Rhodophyta , Chile , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...