Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Alzheimers Dement (N Y) ; 9(2): e12394, 2023.
Article in English | MEDLINE | ID: mdl-37215505

ABSTRACT

Alzheimer's disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research.

2.
Nat Commun ; 13(1): 2927, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614064

ABSTRACT

Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states.


Subject(s)
Biotin , Proteomics , Animals , Astrocytes/metabolism , Biotin/metabolism , Biotinylation , Brain/metabolism , Mice , Neurons/metabolism , Proteome/metabolism
3.
Nat Neurosci ; 25(2): 213-225, 2022 02.
Article in English | MEDLINE | ID: mdl-35115731

ABSTRACT

The biological processes that are disrupted in the Alzheimer's disease (AD) brain remain incompletely understood. In this study, we analyzed the proteomes of more than 1,000 brain tissues to reveal new AD-related protein co-expression modules that were highly preserved across cohorts and brain regions. Nearly half of the protein co-expression modules, including modules significantly altered in AD, were not observed in RNA networks from the same cohorts and brain regions, highlighting the proteopathic nature of AD. Two such AD-associated modules unique to the proteomic network included a module related to MAPK signaling and metabolism and a module related to the matrisome. The matrisome module was influenced by the APOE ε4 allele but was not related to the rate of cognitive decline after adjustment for neuropathology. By contrast, the MAPK/metabolism module was strongly associated with the rate of cognitive decline. Disease-associated modules unique to the proteome are sources of promising therapeutic targets and biomarkers for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Brain/metabolism , Cognitive Dysfunction/pathology , Humans , Proteome , Proteomics , RNA/metabolism
4.
Mol Neurodegener ; 15(1): 28, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381088

ABSTRACT

BACKGROUND: Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. METHODS: We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. RESULTS: Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aß plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aß phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. CONCLUSIONS: Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.


Subject(s)
Alzheimer Disease/metabolism , Flow Cytometry , Macrophages/metabolism , Microfilament Proteins/metabolism , Microglia/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Flow Cytometry/methods , Humans , Mice , Proteomics/methods
5.
Mol Neurodegener ; 13(1): 34, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29954413

ABSTRACT

BACKGROUND: Microglia are innate immune cells of the brain that perform phagocytic and inflammatory functions in disease conditions. Transcriptomic studies of acutely-isolated microglia have provided novel insights into their molecular and functional diversity in homeostatic and neurodegenerative disease states. State-of-the-art mass spectrometry methods can comprehensively characterize proteomic alterations in microglia in neurodegenerative disorders, potentially providing novel functionally relevant molecular insights that are not provided by transcriptomics. However, comprehensive proteomic profiling of adult primary microglia in neurodegenerative disease conditions has not been performed. METHODS: We performed quantitative mass spectrometry based proteomic analyses of purified CD11b+ acutely-isolated microglia from adult (6 mo) mice in normal, acute neuroinflammatory (LPS-treatment) and chronic neurodegenerative states (5xFAD model of Alzheimer's disease [AD]). Differential expression analyses were performed to characterize specific microglial proteomic changes in 5xFAD mice and identify overlap with LPS-induced pro-inflammatory changes. Our results were also contrasted with existing proteomic data from wild-type mouse microglia and from existing microglial transcriptomic data from wild-type and 5xFAD mice. Neuropathological validation studies of select proteins were performed in human AD and 5xFAD brains. RESULTS: Of 4133 proteins identified, 187 microglial proteins were differentially expressed in the 5xFAD mouse model of AD pathology, including proteins with previously known (Apoe, Clu and Htra1) as well as previously unreported relevance to AD biology (Cotl1 and Hexb). Proteins upregulated in 5xFAD microglia shared significant overlap with pro-inflammatory changes observed in LPS-treated mice. Several proteins increased in human AD brain were also upregulated by 5xFAD microglia (Aß peptide, Apoe, Htra1, Cotl1 and Clu). Cotl1 was identified as a novel microglia-specific marker with increased expression and strong association with AD neuropathology. Apoe protein was also detected within plaque-associated microglia in which Apoe and Aß were highly co-localized, suggesting a role for Apoe in phagocytic clearance of Aß. CONCLUSIONS: We report a comprehensive proteomic study of adult mouse microglia derived from acute neuroinflammation and AD models, representing a valuable resource to the neuroscience research community. We highlight shared and unique microglial proteomic changes in acute neuroinflammation aging and AD mouse models and identify novel roles for microglial proteins in human neurodegeneration.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Microglia/immunology , Microglia/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , Proteomics
6.
Front Immunol ; 9: 405, 2018.
Article in English | MEDLINE | ID: mdl-29552013

ABSTRACT

In the central nervous system (CNS), microglia are innate immune mononuclear phagocytes (CNS MPs) that can phagocytose infectious particles, apoptotic cells, neurons, and pathological protein aggregates, such as Aß in Alzheimer's disease (AD). While CD11b+CD45low microglia account for the majority of CNS MPs, a small population of CD11b+CD45high CNS MPs is also recognized in AD that surround Aß plaques. These transcriptionally and pathologically unique CD45high cells have unclear origin and undefined phagocytic characteristics. We have comprehensively validated rapid flow cytometric assays of bulk-phase and amyloid ß fibril (fAß) phagocytosis and applied these to study acutely isolated CNS MPs. Using these methods, we provide novel insights into differential abilities of CD11b+ CD45low and CD45high CNS MPs to phagocytose macroparticles and fAß under normal, acute, and chronic neuroinflammatory states. CD45high CNS MPs also highly upregulate TREM2, CD11c, and several disease-associated microglia signature genes and have a higher phagocytic capacity for Aß as compared to CD45low microglia in the 5xFAD mouse model of AD that becomes more apparent with aging. Our data suggest an overall pro-phagocytic and protective role for CD11b+CD45high CNS MPs in neurodegeneration, which if promoted, could be beneficial.


Subject(s)
Aging/immunology , Alzheimer Disease/immunology , Amyloid beta-Peptides/metabolism , Brain/pathology , Microglia/immunology , Phagocytes/immunology , Phagocytosis , Amyloid beta-Peptides/immunology , Animals , Cell Line , Disease Models, Animal , Humans , Leukocyte Common Antigens/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mononuclear Phagocyte System , Receptors, Immunologic/metabolism
7.
J Neuroinflammation ; 14(1): 128, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28651603

ABSTRACT

BACKGROUND: Kv1.3 potassium channels regulate microglial functions and are overexpressed in neuroinflammatory diseases. Kv1.3 blockade may selectively inhibit pro-inflammatory microglia in neurological diseases but the molecular and cellular mechanisms regulated by Kv1.3 channels are poorly defined. METHODS: We performed immunoblotting and flow cytometry to confirm Kv1.3 channel upregulation in lipopolysaccharide (LPS)-activated BV2 microglia and in brain mononuclear phagocytes freshly isolated from LPS-treated mice. Quantitative proteomics was performed on BV2 microglia treated with control, LPS, ShK-223 (highly selective Kv1.3 blocker), and LPS+ShK-223. Gene ontology (GO) analyses of Kv1.3-dependent LPS-regulated proteins were performed, and the most representative proteins and GO terms were validated. Effects of Kv1.3-blockade on LPS-activated BV2 microglia were studied in migration, focal adhesion formation, reactive oxygen species production, and phagocytosis assays. In vivo validation of protein changes and predicted molecular pathways were performed in a model of systemic LPS-induced neuroinflammation, employing antigen presentation and T cell proliferation assays. Informed by pathway analyses of proteomic data, additional mechanistic experiments were performed to identify early Kv1.3-dependent signaling and transcriptional events. RESULTS: LPS-upregulated cell surface Kv1.3 channels in BV2 microglia and in microglia and CNS-infiltrating macrophages isolated from LPS-treated mice. Of 144 proteins differentially regulated by LPS (of 3141 proteins), 21 proteins showed rectification by ShK-223. Enriched cellular processes included MHCI-mediated antigen presentation (TAP1, EHD1), cell motility, and focal adhesion formation. In vitro, ShK-223 decreased LPS-induced focal adhesion formation, reversed LPS-induced inhibition of migration, and inhibited LPS-induced upregulation of EHD1, a protein involved in MHCI trafficking. In vivo, intra-peritoneal ShK-223 inhibited LPS-induced MHCI expression by CD11b+CD45low microglia without affecting MHCI expression or trafficking of CD11b+CD45high macrophages. ShK-223 inhibited LPS-induced MHCI-restricted antigen presentation to ovalbumin-specific CD8+ T cells both in vitro and in vivo. Kv1.3 co-localized with the LPS receptor complex and regulated LPS-induced early serine (S727) STAT1 phosphorylation. CONCLUSIONS: We have unraveled novel molecular and functional roles for Kv1.3 channels in pro-inflammatory microglial activation, including a Kv1.3 channel-regulated pathway that facilitates MHCI expression and MHCI-dependent antigen presentation by microglia to CD8+ T cells. We also provide evidence for neuro-immunomodulation by systemically administered ShK peptides. Our results further strengthen the therapeutic candidacy of microglial Kv1.3 channels in neurologic diseases.


Subject(s)
Kv1.3 Potassium Channel/biosynthesis , Lipopolysaccharides/pharmacology , Microglia/drug effects , Microglia/metabolism , Proteomics/methods , Animals , Cell Line , Cells, Cultured , Dose-Response Relationship, Drug , Female , Kv1.3 Potassium Channel/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/immunology
8.
Brain Res ; 1622: 328-38, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26168900

ABSTRACT

The misfolding and aggregation of the Aß peptide - a fundamental event in the pathogenesis of Alzheimer׳s disease - can be instigated in the brains of experimental animals by the intracranial infusion of brain extracts that are rich in aggregated Aß. Recent experiments have found that the peripheral (intraperitoneal) injection of Aß seeds induces Aß deposition in the brains of APP-transgenic mice, largely in the form of cerebral amyloid angiopathy. Macrophage-type cells normally are involved in pathogen neutralization and antigen presentation, but under some circumstances, circulating monocytes have been found to act as vectors for the transport of pathogenic agents such as viruses and prions. The present study assessed the ability of peripheral monocytes to transport Aß aggregates from the peritoneal cavity to the brain. Our initial experiments showed that intravenously delivered macrophages that had previously ingested fluorescent nanobeads as tracers migrate primarily to peripheral organs such as spleen and liver, but that a small number also reach the brain parenchyma. We next injected CD45.1-expressing monocytes from donor mice intravenously into CD45.2-expressing host mice; after 24h, analysis by fluorescence-activated cell sorting (FACS) and histology confirmed that some CD45.1 monocytes enter the brain, particularly in the superficial cortex and around blood vessels. When the donor monocytes are first exposed to Aß-rich brain extracts from human AD cases, a subset of intravenously delivered Aß-containing cells migrate to the brain. These experiments indicate that, in mouse models, circulating monocytes are potential vectors by which exogenously delivered, aggregated Aß travels from periphery to brain, and more generally support the hypothesis that macrophage-type cells can participate in the dissemination of proteopathic seeds.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Monocytes/metabolism , Animals , Biological Transport , Brain/blood supply , Flow Cytometry , Humans , Immunohistochemistry , Leukocyte Common Antigens/metabolism , Mice, Inbred C57BL , Monocytes/transplantation , Spleen/metabolism
9.
Neurosci Lett ; 547: 16-20, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23669642

ABSTRACT

RING finger protein 11 (RNF11), a negative regulator of NF-κB signaling pathway, colocalizes with α-synuclein and is sequestered in Lewy bodies in Parkinson's disease (PD). Since persistent NF-κB activation is reported in PD, in this report we investigated if RNF11 expression level is correlated to activated NF-κB in PD. We examined RNF11 expression levels in correlation to phospho-p65, a marker for activated NF-κB, in control and PD brain tissue from cerebral cortex. In addition we performed double immunofluorescence labeling experiments to confirm this correlation. Our investigations demonstrated that the neuronal RNF11 expression was down-regulated in PD and was usually associated with increased expression of phospho-p65. Double labeling confirmed that loss of neuronal RNF11 was linked to increased phospho-p65 expression, suggesting that persistent presence of NF-κB activation could be due to decreased levels of its negative regulator. Our data exemplifies the relevance of RNF11 and persistent NF-κB activation in PD.


Subject(s)
Brain/metabolism , Carrier Proteins/metabolism , NF-kappa B/metabolism , Parkinson Disease/metabolism , Carrier Proteins/analysis , DNA-Binding Proteins , Fluorescent Antibody Technique , Humans , NF-kappa B/analysis
10.
Neurobiol Dis ; 54: 264-79, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23318928

ABSTRACT

Chronic activation of the NF-κB pathway is associated with progressive neurodegeneration in Parkinson's disease (PD). Given the role of neuronal RING finger protein 11 (RNF11) as a negative regulator of the NF-κB pathway, in this report we investigated the function of RNF11 in dopaminergic cells in PD-associated neurodegeneration. We found that RNF11 knockdown in an in vitro model of PD mediated protection against 6-OHDA-induced toxicity. In converse, over-expression of RNF11 enhanced 6-OHDA-induced dopaminergic cell death. Furthermore, by directly manipulating NF-κB signaling, we showed that the observed RNF11-enhanced 6-OHDA toxicity is mediated through inhibition of NF-κB-dependent transcription of TNF-α, antioxidants GSS and SOD1, and anti-apoptotic factor BCL2. Experiments in an in vivo 6-OHDA rat model of PD recapitulated the in vitro results. In vivo targeted RNF11 over-expression in nigral neurons enhanced 6-OHDA toxicity, as evident by increased amphetamine-induced rotations and loss of nigral dopaminergic neurons as compared to controls. This enhanced toxicity was coupled with the downregulation of NF-κB transcribed GSS, SOD1, BCL2, and neurotrophic factor BDNF mRNA levels, in addition to decreased TNF-α mRNA levels in ventral mesenchephalon samples. In converse, knockdown of RNF11 was associated with protective phenotypes and increased expression of above-mentioned NF-κB transcribed genes. Collectively, our in vitro and in vivo data suggest that RNF11-mediated inhibition of NF-κB in dopaminergic cells exaggerates 6-OHDA toxicity by inhibiting neuroprotective responses while loss of RNF11 inhibition on NF-κB activity promotes neuronal survival. The decreased expression of RNF11 in surviving cortical and nigral tissue detected in PD patients, thus implies a compensatory response in the diseased brain to PD-associated insults. In summary, our findings demonstrate that RNF11 in neurons can modulate susceptibility to 6-OHDA toxicity through NF-κB mediated responses. This neuron-specific role of RNF11 in the brain has important implications for targeted therapeutics aimed at preventing neurodegeneration.


Subject(s)
Carrier Proteins/metabolism , Dopaminergic Neurons/metabolism , NF-kappa B/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Adrenergic Agents/toxicity , Aged , Aged, 80 and over , Animals , DNA-Binding Proteins , Female , Humans , Immunohistochemistry , Male , Middle Aged , Nerve Degeneration/metabolism , Oxidopamine/toxicity , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Substantia Nigra/pathology , Transfection
11.
Neurosci Lett ; 528(2): 174-9, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22975135

ABSTRACT

Microglia are resident macrophages in the central nervous system (CNS) that play a major role in neuroinflammation and pathogenesis of several neurodegenerative diseases. Upon activation, microglia releases a multitude of pro-inflammatory factors that initiate and sustain an inflammatory response by activating various signalling pathways, including the NF-κB pathway in a feed forward cycle. In microglial cells, activation of NF-κB signalling is normally transient, while sustained NF-κB activation is associated with persistent neuroinflammation. RING finger protein 11 (RNF11), in association with A20 ubiquitin-editing complex, is one of the key negative regulators of NF-κB signalling pathway in neurons. In this study, we have demonstrated and confirmed this role of RNF11 in microglia, the immune cells of the CNS. Coimmunoprecipitation experiments showed that RNF11 and A20 interact in a microglial cell line, suggesting the presence of A20 ubiquitin-editing protein complex in microglial cells. Next, using targeted short hairpin RNA (shRNA) knockdown and over-expression of RNF11, we established that RNF11 expression levels are inversely related to NF-κB activation, as evident from altered expression of NF-κB transcribed genes. Moreover our studies, illustrated that RNF11 confers protection against LPS-induced cell cytotoxicity. Thus our investigations clearly demonstrated that microglial RNF11 is a negative regulator of NF-κB signalling pathway and could be a strong potential target for modulating inflammatory responses in neurodegenerative diseases.


Subject(s)
Carrier Proteins/metabolism , Microglia/physiology , NF-kappa B/physiology , Animals , Carrier Proteins/genetics , Cell Survival , Cells, Cultured , Cysteine Endopeptidases , DNA-Binding Proteins/metabolism , Humans , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/cytology , Microglia/immunology , Neuroimmunomodulation , Primary Cell Culture , RNA, Messenger/metabolism , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitin-Protein Ligases/metabolism
12.
Curr Biol ; 22(12): 1142-8, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22658601

ABSTRACT

Restless Legs Syndrome (RLS), first chronicled by Willis in 1672 and described in more detail by Ekbom in 1945, is a prevalent sensorimotor neurological disorder (5%-10% in the population) with a circadian predilection for the evening and night. Characteristic clinical features also include a compelling urge to move during periods of rest, relief with movement, involuntary movements in sleep (viz., periodic leg movements of sleep), and fragmented sleep. Although the pathophysiology of RLS is unknown, dopaminergic neurotransmission and deficits in iron availability modulate expressivity. Genome-wide association studies have identified a polymorphism in an intronic region of the BTBD9 gene on chromosome 6 that confers substantial risk for RLS. Here, we report that loss of the Drosophila homolog CG1826 (dBTBD9) appreciably disrupts sleep with concomitant increases in waking and motor activity. We further show that BTBD9 regulates brain dopamine levels in flies and controls iron homeostasis through the iron regulatory protein-2 in human cell lines. To our knowledge, this represents the first reverse genetic analysis of a "novel" or heretofore poorly understood gene implicated in an exceedingly common and complex sleep disorder and the development of an RLS animal model that closely recapitulates all disease phenotypes.


Subject(s)
Brain/metabolism , Carrier Proteins/genetics , Dopamine/metabolism , Drosophila Proteins/genetics , Iron/metabolism , Restless Legs Syndrome/genetics , Restless Legs Syndrome/physiopathology , Sleep Deprivation/genetics , Animals , Animals, Genetically Modified , Cell Line , Chromatography, High Pressure Liquid , Drosophila , Genetic Vectors/genetics , Humans , Immunohistochemistry , Iron Regulatory Protein 2/metabolism , Locomotion/genetics , Locomotion/physiology , Microscopy, Confocal , Nerve Tissue Proteins , Sleep Deprivation/physiopathology , Transcription Factors/genetics
13.
Neurosci Lett ; 520(1): 104-9, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22634524

ABSTRACT

Activation of innate and adaptive immune responses is tightly regulated, as insufficient activation could result in defective clearance of pathogens, while excessive activation might lead to lethal systemic inflammation or autoimmunity. A20 functions as a negative regulator of innate and adaptive immunity by inhibiting NF-κB activation. A20 mediates its inhibitory function in a complex with other proteins including RNF11 and Itch, both E3 ubiquitin ligases and TAX1BP1, an adaptor protein. Since NF-κB has been strongly implicated in various neuronal functions, we predict that its inhibitor, the A20 complex, is also present in the nervous system. In efforts to better understand the role of A20 complex and NF-κB signaling pathway, we determined regional distribution of A20 mRNA as well as protein expression levels and distribution of RNF11, TAX1BP1 and Itch, in different brain regions. The distribution of TRAF6 was also investigated since TRAF6, also an E3 ligase, has an important role in NF-κB signaling pathway. Our investigations, for the first time, describe and demonstrate that the essential components of the A20 ubiquitin-editing complex are present and mainly expressed in neurons. The A20 complex components are also differentially expressed throughout the human brain. This study provides useful information about region specific expression of the A20 complex components that will be invaluable while determining the role of NF-κB signaling pathway in neuronal development and degeneration.


Subject(s)
Brain/metabolism , DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Ubiquitin/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitin-Protein Ligases/metabolism
14.
J Neuroinflammation ; 9: 67, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22507528

ABSTRACT

BACKGROUND: The RING domain-containing protein RING finger protein 11 (RNF11) is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases. METHODS AND RESULTS: Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA) knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11's association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and TNF-α mRNA and proteins, suggesting that NF-κB signaling and associated inflammatory responses are aberrantly regulated in the absence of RNF11. CONCLUSIONS: Our findings support the hypothesis that, in the nervous system, RNF11 negatively regulates canonical NF-κB signaling. Reduced or functionally compromised RNF11 could influence NF-κB-associated neuronal functions, including exaggerated inflammatory responses that may have implications for neurodegenerative disease pathogenesis and progression.


Subject(s)
Carrier Proteins/physiology , NF-kappa B/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Cells, Cultured , DNA-Binding Proteins , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , NF-kappa B/physiology
15.
Neurobiol Dis ; 34(3): 417-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19250966

ABSTRACT

More than 80 years after iron accumulation was initially described in the substantia nigra (SN) of Parkinson's disease (PD) patients, the mechanisms responsible for this phenomenon are still unknown. Similarly, how iron is delivered to its major recipients in the cell - mitochondria and the respiratory complexes - has yet to be elucidated. Here, we report a novel transferrin/transferrin receptor 2 (Tf/TfR2)-mediated iron transport pathway in mitochondria of SN dopamine neurons. We found that TfR2 has a previously uncharacterized mitochondrial targeting sequence that is sufficient to import the protein into these organelles. Importantly, the Tf/TfR2 pathway can deliver Tf bound iron to mitochondria and to the respiratory complex I as well. The pathway is redox-sensitive and oxidation of Tf thiols to disulfides induces release from Tf of highly reactive ferrous iron, which contributes to free radical production. In the rotenone model of PD, Tf accumulates in dopamine neurons, with much of it accumulating in the mitochondria. This is associated with iron deposition in SN, similar to what occurs in PD. In the human SN, TfR2 is also found in mitochondria of dopamine neurons, and in PD there is a dramatic increase of oxidized Tf in SN. Thus, we have discovered a novel mitochondrial iron transport system that goes awry in PD, and which may provide a new target for therapeutic intervention.


Subject(s)
Iron/metabolism , Mitochondria/physiology , Parkinson Disease, Secondary/metabolism , Receptors, Transferrin/metabolism , Substantia Nigra/physiopathology , Transferrin/metabolism , Aged , Animals , Dopamine/metabolism , Electron Transport Complex I/metabolism , Humans , Macaca fascicularis , Macaca mulatta , Neurons/physiology , Oxidation-Reduction , Parkinson Disease/physiopathology , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Inbred Lew , Rotenone , Signal Transduction
16.
Neurobiol Dis ; 31(3): 309-15, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18573343

ABSTRACT

Fas-associated factor 1 or FAF1 is a Fas-binding protein implicated in apoptosis. FAF1 is the product of a gene at PARK 10 locus on chromosome 1p32, a locus associated with late-onset PD [Hicks, A.A., Petursson, H., Jonsson, T., Stefansson, H., Johannsdottir, H.S., Sainz, J., Frigge, M.L.et al., 2002. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol. 52, 549-555.]. In the present study we investigated the role of FAF1 in cell death and in Parkinson's disease (PD) pathogenesis. FAF1 levels were significantly increased in frontal cortex of PD as well as in PD cases with Alzheimer's disease (AD) pathology compared to control cases. Changes in FAF1 expression were specific to PD-related alpha-synuclein pathology and nigral cell loss. In addition, PD-related insults including, mitochondrial complex I inhibition, oxidative stress, and increased alpha-synuclein expression specifically increased endogenous FAF1 expression in vitro. Increased FAF1 levels induced cell death and significantly potentiated toxic effects of PD-related stressors including, oxidative stress, mitochondrial complex I inhibition and proteasomal inhibition. These studies, together with previous genetic linkage studies, highlight the potential significance of FAF1 in pathogenesis of idiopathic PD.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins , Brain/pathology , Brain/physiopathology , Cell Death/genetics , Cell Line , Chromosomes, Human, Pair 1/genetics , Electron Transport Complex I/metabolism , Energy Metabolism/genetics , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Humans , Middle Aged , Mitochondria/metabolism , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Neurons/pathology , Oxidative Stress/genetics , Parkinson Disease/physiopathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Substantia Nigra/physiopathology , alpha-Synuclein/metabolism
17.
J Neuropathol Exp Neurol ; 66(10): 955-64, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17917589

ABSTRACT

The PARK10 locus is associated with idiopathic Parkinson disease (PD), but the responsible gene remains to be identified. Genes associated with familial PD, as well as biochemical evidence from sporadic PD and animal models, have implicated components of the ubiquitin-proteasome system in PD pathogenesis. One attractive candidate gene at the PARK10 locus is RING-Finger Protein 11 (RNF11), the deduced amino acid sequence of which predicts a RING-H2 domain common to E3 ubiquitin ligases such as parkin. To facilitate understanding of this protein and its possible role in PD, we characterized the expression and localization of RNF11 in brain. We detected RNF11 transcript and protein and provided the first direct evidence that RNF11 is expressed in brain. Immunohistochemical analysis of RNF11 protein in rat and human brain, using 2 different antibodies, corroborated the mRNA findings. Both antibodies show that RNF11 is restricted to neurons and excluded from white matter. Moreover, RNF11 is expressed by vulnerable neurons of the substantia nigra and sequestered into Lewy bodies in brains of patients with idiopathic PD. Collectively, these findings identify RNF11 as a strong candidate gene at the PARK10 locus and highlight its potential significance in the development of the common form of PD.


Subject(s)
Brain Chemistry/genetics , Carrier Proteins/genetics , Lewy Bodies/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Autopsy , Blotting, Northern , DNA-Binding Proteins , Female , Gene Expression , Humans , Immunohistochemistry , Lewy Bodies/genetics , Male , Middle Aged , Molecular Sequence Data , Paraffin Embedding , Parkinson Disease/genetics , Plasmids/genetics , Rats
18.
Handb Clin Neurol ; 83: 265-87, 2007.
Article in English | MEDLINE | ID: mdl-18808918
19.
Neurobiol Dis ; 22(2): 404-20, 2006 May.
Article in English | MEDLINE | ID: mdl-16439141

ABSTRACT

Sporadic Parkinson's disease (PD) is most likely caused by a combination of environmental exposures and genetic susceptibilities, although there are rare monogenic forms of the disease. Mitochondrial impairment at complex I, oxidative stress, alpha-synuclein aggregation, and dysfunctional protein degradation, have been implicated in PD pathogenesis, but how they are related to each other is unclear. To further evaluated PD pathogenesis here, we used in vivo and in vitro models of chronic low-grade complex I inhibition with the pesticide rotenone. Chronic rotenone exposure in vivo caused oxidative modification of DJ-1, accumulation of alpha-synuclein, and proteasomal impairment. Interestingly, the effects become more regionally restricted such that systemic complex I inhibition eventually results in highly selective degeneration of the nigrostriatal pathway. DJ-1 modifications, alpha-synuclein accumulation, and proteasomal dysfunction were also seen in vitro and these effects could be prevented with alpha-tocopherol. Thus, chronic exposure to a pesticide and mitochondrial toxin brings into play three systems, DJ-1, alpha-synuclein, and the ubiquitin-proteasome system, and implies that mitochondrial dysfunction and oxidative stress link environmental and genetic forms of the disease.


Subject(s)
Nerve Degeneration/chemically induced , Oncogene Proteins/drug effects , Parkinsonian Disorders/chemically induced , Proteasome Endopeptidase Complex/drug effects , Rotenone/toxicity , Ubiquitin/drug effects , alpha-Synuclein/drug effects , Animals , Cell Line, Tumor , Disease Models, Animal , Electron Transport Complex I/drug effects , Electron Transport Complex I/physiology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Humans , Insecticides/toxicity , Male , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Neurons/drug effects , Neurons/metabolism , Oncogene Proteins/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peroxiredoxins , Proteasome Endopeptidase Complex/metabolism , Protein Deglycase DJ-1 , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , Signal Transduction/physiology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/physiopathology , Ubiquitin/metabolism , alpha-Synuclein/metabolism
20.
Exp Neurol ; 191 Suppl 1: S17-27, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15629758

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by nigrostriatal dopaminergic degeneration and development of cytoplasmic inclusions known as Lewy bodies. To date, the mechanisms involved in PD pathogenesis are not clearly understood. Clues from genetic studies including identification of mutations in genes for alpha-synuclein, parkin, and ubiquitin carboxy hydrolase L1 associated with familial PD and the presence of proteinaceous cytoplasmic inclusions in spared dopaminergic nigral neurons in sporadic cases of PD have suggested an important role for ubiquitin-proteasome system (UPS) and aberrant protein degradation. In vivo and in vitro studies have linked parkin, alpha-synuclein, and oxidative stress to a compromised UPS and PD pathogenesis suggesting novel therapeutic targets.


Subject(s)
Parkinson Disease/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Animals , Disease Models, Animal , Humans , Lewy Bodies/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Parkinson Disease/etiology , Parkinson Disease/genetics , Synucleins , Ubiquitin/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein
SELECTION OF CITATIONS
SEARCH DETAIL
...