Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 251: 104065, 2022 12.
Article in English | MEDLINE | ID: mdl-36054960

ABSTRACT

Biosurfactants, surface-active agents produced by microorganisms, are increasingly studied for their potential use in soil remediation processes because they are more environmentally friendly than their chemically produced homologues. In this work, we report on the use of a crude biosurfactant produced by a bacterial consortium isolated from a PAHs-contaminated soil, compared with other (bio)surfactants (Tween80, Sodium dodecyl sulfate - SDS, rhamnolipids mix), to wash PAHs from a contaminated porous media. Assays were done using columns filled with sand or sand-clay mixtures (95:5) spiked with four model PAHs. The crude biosurfactant showed less adsorption to the [sand] and the [sand + clay] columns compared to Tween 80, SDS and the rhamnolipid mix. The biosurfactant showed the second best capacity to remove PAHs from the columns (as dissolved and particulate phases), both from [sand] and [sand + clay], after SDS when applied at lower concentrations than the other sufactants. The effluent concentrations of phenanthrene (PHE), pyrene (PYR) and benzo[a]pyrene (BAP) increased in the presence of the crude biosurfactant. Compared to the control experiment using only water, the global PAHs washed mass (amount of PAHs removed from the columns) increased between 9 and 1000 times for PHE and BAP in the [sand] column, and between 55 and 6000 times respectively for PHE and BAP in the [sand + clay] columns. Moreover, in the [sand + clay] columns, leaching of a part of the clays was observed in the SDS and the biosurfactant injections assays. This clay leaching resulted in higher PAHs removal, due not to desorption but rather to particulate transport. In the context of washing PAH-contaminated soils in biopiles or subsurface remediation, our results could help in sizing the remediation approach using an environmental friendly biosurfactant, before a pump-and-treat process.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Surface-Active Agents/chemistry , Soil Pollutants/analysis , Clay , Porosity , Sand , Soil/chemistry , Biodegradation, Environmental
2.
Nanomaterials (Basel) ; 12(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564279

ABSTRACT

Co/Fe-based layered double hydroxides (LDHs) are among the most promising materials for electrochemical applications, particularly in the development of energy storage devices, such as electrochemical capacitors. They have also been demonstrated to function as energy conversion catalysts in photoelectrochemical applications for CO2 conversion into valuable chemicals. Understanding the formation mechanisms of such compounds is therefore of prime interest for further controlling the chemical composition, structure, morphology, and/or reactivity of synthesized materials. In this study, a combination of X-ray diffraction, vibrational and absorption spectroscopies, as well as physical and chemical analyses were used to provide deep insight into the coprecipitation formation mechanisms of Co/Fe-based LDHs under high supersaturation conditions. This procedure consists of adding an alkaline aqueous solution (2.80 M NaOH and 0.78 M Na2CO3) into a cationic solution (0.15 M CoII and 0.05 M FeIII) and varying the pH until the desired pH value is reached. Beginning at pH 2, pH increases induce precipitation of FeIII as ferrihydrite, which is the pristine reactional intermediate. From pH > 2, CoII sorption on ferrihydrite promotes a redox reaction between FeIII of ferrihydrite and the sorbed CoII. The crystallinity of the poorly crystalized ferrihydrite progressively decreases with increasing pH. The combination of such a phenomenon with the hydrolysis of both the sorbed CoIII and free CoII generates pristine hydroxylated FeII/CoIII LDHs at pH 7. Above pH 7, free CoII hydrolysis proceeds, which is responsible for the local dissolution of pristine LDHs and their reprecipitation and then 3D organization into CoII4FeII2CoIII2 LDHs. The progressive incorporation of CoII into the LDH structure is accountable for two phenomena: decreased coulombic attraction between the positive surface-charge sites and the interlayer anions and, concomitantly, the relative redox potential evolution of the redox species, such as when FeII is re-oxidized to FeIII, while CoIII is re-reduced to CoII, returning to a CoII6FeIII2 LDH. The nature of the interlamellar species (OH−, HCO3−, CO32− and NO3−) depends on their mobility and the speciation of anions in response to changing pH.

3.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937863

ABSTRACT

Studying the electrogravimetric behavior of Mg/Fe-layered double hydroxide (LDH) nanoparticles with an electrochemical quartz crystal microbalance demonstrates its pseudocapacitance properties of mix cation and anion exchanger. The electrochemical control of the oxidation state of iron constituting the layered sheets allowed anion intercalation/deintercalation into the LDH interlayer space. Concomitantly, in agreement with the pH of zero point of net charge of the Mg/Fe-LDH, the interfacial pH increase via catalyzed hydrogen evolution reaction allows cation electroadsorption onto the external surfaces of the nanoplatelets.

4.
Sci Total Environ ; 709: 136143, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31884277

ABSTRACT

Biosurfactants are surface-active agents produced by microorganisms whose use in soil remediation processes is increasingly discussed as a more environmentally friendly alternative than chemically produced surfactants. In this work, we report the production of a biosurfactant by a bacterial community extracted from a polluted soil, mainly impacted by PAHs, in order to use it in a soil-washing process coupled with bioremediation. Nutrient balance was a critical parameter to optimize the production. Best conditions for biosurfactant production were found to be 20 g/L of glucose, 2 g/L of NH4NO3, and 14.2 g/L of Na2HPO4, corresponding to a C/N/P molar ratio equal to 13/1/2. Purification of the produced biosurfactant by acidification and double extraction with dichloromethane as a solvent allowed measuring the Critical Micellar Concentration (CMC) as equal to 42 mg/L. The capacity of the purified biosurfactant to increase the apparent solubility of four reference PAHs (naphthalene, phenanthrene, pyrene and benzo[a]pyrene) was completed. The solubilisation ratios, in mg of PAH/g of biosurfactant for phenanthrene, pyrene and benzo[a]pyrene are 0.214, 0.1204 and 0.0068, respectively. Identification of the bacteria found in the colony producing the biosurfactant showed the presence of bacteria able to produce biosurfactant (Enterobacteriaceae, Pseudomonas), as well as, others able to degrade PAHs (Microbacterium, Pseudomonas, Rhodanobacteraceae).


Subject(s)
Soil , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Surface-Active Agents
5.
Environ Sci Pollut Res Int ; 26(7): 7177-7194, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30652270

ABSTRACT

The degradation mechanism of the pollutant hexachloroethane (HCA) by a suspension of Pd-doped zerovalent iron microparticles (Pd-mZVI) in dissolved lactic acid polymers and oligomers (referred to as PLA) was investigated using gas chromatography and the indirect monitoring of iron corrosion by continuous measurements of pH, oxidation-reduction potential (ORP), and conductivity. The first experiments took place in the absence of HCA, to understand the evolution of the Pd-mZVI/PLA/H2O system. This showed that the evolution of pH, ORP, and conductivity is related to changes in solution chemistry due to iron corrosion and that the system is initially cathodically controlled by H+ mass transport to Pd surfaces because of the presence of an extensive PLA layer. We then investigated the effects of Pd-mZVI particles, temperature, initial HCA concentration, and PLA content on the Pd-mZVI/PLA/HCA/H2O system, to obtain a better understanding of the degradation mechanism. In all cases, HCA dechlorination first requires the production of atomic hydrogen H*-involving the accumulation of tetrachloroethylene (PCE) as an intermediate-before its subsequent reduction to non-chlorinated C2 and C4 compounds. The ratio between Pd-mZVI dosage, initial HCA concentration, and PLA content affects the rate of H* generation as well as the rate-determining step of the process. A pseudo-first-order equation can be applied when Pd-mZVI dosage is much higher than the theoretical stoichiometry (600 mg for [HCA]0 = 5-20 mg L-1). Our results indicate that the HCA degradation mechanism includes mass transfer, sorption, surface reaction with H*, and desorption of the product.


Subject(s)
Ethane/analogs & derivatives , Hydrocarbons, Chlorinated/chemistry , Iron/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Chromatography , Corrosion , Ethane/chemistry , Hydrogen , Lactic Acid , Lead/chemistry , Polymers , Tetrachloroethylene
6.
Sensors (Basel) ; 17(6)2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28608820

ABSTRACT

We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl- selective electrodes, one Ag2S/Ag-based reference or S2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

7.
Sensors (Basel) ; 17(6)2017 May 24.
Article in English | MEDLINE | ID: mdl-28538680

ABSTRACT

Here, we present a surface-enhanced Raman spectroscopy (SERS) nanosensor for environmental pollutants detection. This study was conducted on three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene (BaP), fluoranthene (FL), and naphthalene (NAP). SERS substrates were chemically functionalized using 4-dodecyl benzenediazonium-tetrafluoroborate and SERS analyses were conducted to detect the pollutants alone and in mixtures. Compounds were first measured in water-methanol (9:1 volume ratio) samples. Investigation on solutions containing concentrations ranging from 10-6 g L-1 to 10-3 g L-1 provided data to plot calibration curves and to determine the performance of the sensor. The calculated limit of detection (LOD) was 0.026 mg L-1 (10-7 mol L-1) for BaP, 0.064 mg L-1 (3.2 × 10-7 mol L-1) for FL, and 3.94 mg L-1 (3.1 × 10-5 mol L-1) for NAP, respectively. The correlation between the calculated LOD values and the octanol-water partition coefficient (Kow) of the investigated PAHs suggests that the developed nanosensor is particularly suitable for detecting highly non-polar PAH compounds. Measurements conducted on a mixture of the three analytes (i) demonstrated the ability of the developed technology to detect and identify the three analytes in the mixture; (ii) provided the exact quantitation of pollutants in a mixture. Moreover, we optimized the surface regeneration step for the nanosensor.

8.
Talanta ; 80(1): 372-6, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19782238

ABSTRACT

This paper reports the interest of the novel 4-carboxyphenyl-grafted screen-printed electrodes (4-CP-SPEs) for sub-nanomolar analysis of uranium in water samples. Electrodes were easily prepared via electrochemically reduction of the corresponding diazonium salt. The stability of the grafted layer has been clearly demonstrated. Uranium detection was then achieved by immersing the grafted electrode into the sample solution, followed by the electrochemical measurement of adsorbed U(VI) by square wave voltammetry. Adsorption time was investigated so as to find the best compromise between analysis time, repeatability and reproducibility. Limit of detection and quantitation reached 7 x 10(-10) and 2 x 10(-9) mol L(-1), respectively. Moreover, interference study was conducted with Zn(II), Cd(II), Pb(II) and Cu(II); no major interference was established. 4-CP-SPEs were finally applied for uranium determination in estuarine water demonstrating the convenience of these electrodes for environmental analysis.


Subject(s)
Electrochemistry/methods , Uranium/analysis , Adsorption , Benzoates/chemistry , Cadmium/chemistry , Copper/chemistry , Diazonium Compounds/chemistry , Electrochemistry/instrumentation , Electrodes , Lead/chemistry , Models, Chemical , Nanotechnology/instrumentation , Nanotechnology/methods , Reproducibility of Results , Surface Properties , Water Pollutants, Radioactive/analysis , Zinc/chemistry
9.
Anal Chim Acta ; 573-574: 14-9, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-17723499

ABSTRACT

In this work, we have undertaken the construction of a screen-printed electrode modified by a specific membrane to protect the working surface from interferences during the analysis of trace metals by anodic stripping voltammetry. Different crown-ethers selected for their metals affinity have been incorporated into a membrane then deposed on the working surface of the electrode. Each modified electrode has been first tested in an acidified KNO3 10(-1) mol L(-1) solution (pH 2) doped by free Cd2+ and Pb2+ ions. The response and selectivity of the modified electrodes have been investigated according to different parameters: (i) the substrates (commercial ink or carbon based homemade ink), (ii) the electrode support (polystyrene or transparency film) and (iii) crown-ethers nature (dibenzo-24-crown-8 and tetrathiacyclododecane 12-crown-4). The influence of the substrate on the response of the electrode is clearly demonstrated. Homemade ink appears as the most appropriate substrate to modify the working surface of the screen-printed electrode by a crown-ether based membrane. The effect of the composition of the membrane has been shown too. The best membrane developed showed a detection limit of 0.6 x 10(-8) mol L(-1) for Cd and 0.8 x 10(-8) mol L(-1) for Pb and a quantification limit of 10(-8) mol L(-1) for Cd and 2 x 10(-8) mol L(-1) for Pb. This method, which integrates the extraction, preconcentration and measurement, was successfully applied to environmental samples without pretreatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...