Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1309904, 2024.
Article in English | MEDLINE | ID: mdl-38988996

ABSTRACT

Controversy exists over puberty suppression (PS) in adolescents with gender dysphoria (GD). PS is preferentially achieved with GnRH analogues. By preventing the development of secondary sex characteristics, PS may improve psychological functioning, well-being, quality of life, emotional and behavioral (especially internalizing) problems and depressive symptoms, thus decreasing suicidality. PS can also extend the diagnostic period and give transgender adolescents time to explore their gender identity. GnRHa may also decrease the need for feminization/masculinization surgery. However, 2-year treatment with GnRHa may result in bone mass accrual retardation (decrease in BMD/BMAD z-scores), growth velocity deceleration (decrease in height SDS), increase in fat mass, temporary pause in oocyte/sperm maturation. The most common side effects of GnRHa are hot flashes, mood fluctuations, fatigue and headache. They are usually mild and rarely lead to GnRHa discontinuation. Based on current scientific evidence, PS could be recommended to adolescents who meet the diagnostic criteria of gender incongruence (by DSM-5 and/or ICD-11) and have long-lasting intense GD, which aggravates with puberty onset. Before initiating PS, possible mental issues should be addressed and informed consent (by the adolescent/caregiver) should be given, after counseling on probable reproductive effects of GnRHa. GnRHa can only be started after the adolescent has entered Tanner stage 2. Nevertheless, published studies are inadequate in number, small in size, uncontrolled and relatively short-term, so that it is difficult to draw safe conclusions on efficacy and safety of GnRHa. Large long-term randomized controlled trials are needed to expand knowledge on this controversial issue and elucidate the benefit and risks of PS.


Subject(s)
Gender Dysphoria , Gonadotropin-Releasing Hormone , Puberty , Humans , Gender Dysphoria/drug therapy , Gender Dysphoria/psychology , Adolescent , Puberty/physiology , Puberty/drug effects , Male , Female , Gonadotropin-Releasing Hormone/analogs & derivatives , Puberty Suppression
2.
Medicina (Kaunas) ; 59(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37109772

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.


Subject(s)
Phosphatidylinositol 3-Kinases , Pituitary Neoplasms , Humans , Syndrome , Pituitary Gland/pathology , Pituitary Neoplasms/genetics , Pituitary Neoplasms/therapy , Carcinogenesis/genetics , Cell Transformation, Neoplastic
3.
Saudi J Kidney Dis Transpl ; 25(3): 643-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24821167

ABSTRACT

Rhabdomyolysis is usually caused by muscle injury, drugs or alcohol and presents with muscle weakness and pain. It is characterized by rise in serum creatine kinase, aminotransferases and electrolytes as well as myoglobinuria. Myoglobinuria may cause acute kidney injury by direct proximal tubule cytotoxicity, renal vasoconstriction, intraluminal cast formation and distal tubule obstruction. Muscle pain and weakness as well as vascular injury have been reported after acupuncture. We report a case of severe rhabdomyolysis and acute kidney injury after acupuncture sessions.


Subject(s)
Acupuncture Therapy/adverse effects , Acute Kidney Injury/etiology , Rhabdomyolysis/etiology , Acute Kidney Injury/blood , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Biomarkers/blood , Fluid Therapy , Humans , Male , Middle Aged , Rhabdomyolysis/blood , Rhabdomyolysis/diagnosis , Rhabdomyolysis/therapy , Severity of Illness Index , Treatment Outcome
4.
J Lipids ; 2011: 575840, 2011.
Article in English | MEDLINE | ID: mdl-21789282

ABSTRACT

Dyslipidemia is a common finding in patients with thyroid disease, explained by the adverse effects of thyroid hormones in almost all steps of lipid metabolism. Not only overt but also subclinical hypo- and hyperthyroidism, through different mechanisms, are associated with lipid alterations, mainly concerning total and LDL cholesterol and less often HDL cholesterol, triglycerides, lipoprotein (a), apolipoprotein A1, and apolipoprotein B. In addition to quantitative, qualitative alterations of lipids have been also reported, including atherogenic and oxidized LDL and HDL particles. In thyroid disease, dyslipidemia coexists with various metabolic abnormalities and induce insulin resistance and oxidative stress via a vice-vicious cycle. The above associations in combination with the thyroid hormone induced hemodynamic alterations, might explain the increased risk of coronary artery disease, cerebral ischemia risk, and angina pectoris in older, and possibly ischemic stroke in younger patients with overt or subclinical hyperthyroidism.

SELECTION OF CITATIONS
SEARCH DETAIL
...