Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 34(1): 3, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21253805

ABSTRACT

We extend published works dealing with microphase separation in crosslinked polymer blends to the case where these are surrounded by random impurities. To study their influence on critical microphase properties, from a static and kinetics point of view, we first assume that the (real) disorder caused by impurities is quenched. Second, the replica theory is used to study such critical properties, upon the impurities concentration and their interaction strength. More precisely, we compute the spinodal temperature and structure factor. We find that the spinodal temperature is shifted towards its lower and higher values, for attractive and repulsive impurities, respectively. The obtained expression for the static structure factor suggests that, contrarily to repulsive impurities, the crosslinked mixture scatters better in the presence of attractive ones. Thereafter, the study is extended to kinetics of microphase separation, when the mixture is impregnated by small random impurities. Kinetics is investigated through the growth rate, and in particular, we demonstrate that the latter is increased by the presence of repulsive impurities. This is natural, since these play a stabilizer role. Finally, the discussion is extended to crosslinked polymer blends immersed in a good solvent, which induces drastic changes of the critical microphase properties.


Subject(s)
Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Solutions/chemistry , Kinetics , Particle Size , Surface Properties , Temperature
2.
Eur Phys J E Soft Matter ; 32(4): 391-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20803302

ABSTRACT

The aim of this work is a theoretical study of the effects of the solvent quality on the microphase separation in crosslinked polymer blends, from a static and kinetics point of view. More precisely, we assume that the crosslinked mixture is trapped in a θ-solvent. The static microphase properties are studied through the static structure factor. The latter is computed using an extended blob model, where the crosslinked unlike chains can be viewed as sequences of blobs. We demonstrate that the presence of the θ-solvent simply leads to a multiplicative renormalization of these properties, and the renormalization factors are powers of the overall monomer volume fraction. Second, we investigate the early kinetics of the microphase separation, via the relaxation rate, τ(q), which is a function of the wave number q (at fixed temperature and monomer volume fraction). We first show that the kinetics is entirely controlled by local motions of Rouse type, since the slow motions are frozen out by the presence of crosslinks. Using the blob model, we find an explicit form for the growth rate Ω(q) = τ(q)⁻¹, which depends, in addition to the wave number q , on the overall monomer volume fraction, Φ. Also, we discuss the effect of initial entanglements that are trapped when the system is crosslinked. In fact, these play the role of true reticulation points, and then, they quantitatively contribute to the microseparation phenomenon. Finally, the results are compared to their homologous relatively to the molten state and to the good solvent case. The main conclusion is that the quality of the solvent induces drastic changes of the microphase properties.


Subject(s)
Models, Chemical , Polymers/chemistry , Solvents/chemistry , Cross-Linking Reagents/chemistry , Kinetics , Solutions/chemistry , Surface Properties , Temperature
3.
Eur Phys J E Soft Matter ; 16(4): 365-71, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15756473

ABSTRACT

We present here a theoretical study of the early kinetics of the microphase separation in crosslinked polymer blends, made of two incompatible polymers A and B, dissolved in a common good solvent. Use is made of an extended blob model used previously for the investigation of the static properties of such a transition. We are interested in the variation of the relaxation rate, tau(q), versus the wave number q, in the vicinity of the spinodal temperature. We first show that kinetics is entirely dominated by local motions, which are of Rouse type. Slow motions are absent, because of the permanent presence of crosslinks. Second, we find that the characteristic frequency, omega (q) = tau(q)(-1), increases with increasing wave number q according to a sixth power law, that is omega (q) approximately q6 phi(-9/4), where phi is the overall monomer volume fraction. Therefore, the swelling of strands due to the excluded-volume forces leads to a renormalization of the characteristic frequency by a multiplicative factor scaling as phi(-9/4). The main conclusion is that the presence of a good solvent necessitates relaxation rates less important than those relative to crosslinked mixtures in the molten state.

4.
Eur Phys J E Soft Matter ; 13(4): 353-8, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15170534

ABSTRACT

We re-examine here the computation of the effective force between two star-polymers of respective numbers of branches f(1) and f(2), immersed in a common Theta-solvent. Such a force originates essentially from the repulsive three-body interactions. To achieve this, we take advantage of some established results using renormalization theory for three-dimensional star-polymers, or conformal invariance for two-dimensional ones. We first show that, in dimension d = 3, the force, F(r), decreases with the center-to-center distance r as F(r)/kappa BT congruent with Af1f2 x [r ln (R2/r2]-1 (r

SELECTION OF CITATIONS
SEARCH DETAIL
...