Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(22)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34833618

ABSTRACT

Sky Quality Meter (SQM) is a commercial instrument based on photometers widely used by amateur astronomers for skyglow measurement from the ground. In the framework of the MINLU project, two SQM-LE units were integrated in an autonomous sensor suite realized and tested at University of Padova for monitoring light pollution from drones or sounding balloons. During the ground tests campaign before airborne measurement, the performance of both SQM units was verified in laboratory using controlled light sources as a reference input; the results showed that both units presented an angular response deviating consistently from the expected performance and that the sensors' field of view was larger than the one declared in the manufacturer's datasheet. This aspect in particular would affect direct skyglow measurements during flight as light sources close to the boundaries of the field of view would not be attenuated but instead detected by the sensors. As a direct consequence, the measurement of low-intensity skyglows at stratospheric altitudes could be affected by high-intensity punctual sources acting as lateral disturbances. A dedicated test campaign was therefore conceived and realized to investigate SQM unit response to light sources in the field of view and identify the true angular response curve; the setup consisted in a controlled rotatory stage moving the unit in front of a fixed diffusive light source. Different test conditions were used to validate the experimental procedure, demonstrating the repeatability of the measurements. This paper presents the experimental campaign and the resulting SQM angular response curve; results indicate for both SQMs a larger than expected field of view and the presence of a double peak in the angular response, which is likely related to a non-perfect alignment of SQMs collimation optics. Furthermore, the wider resulting curves suggest that the contribution of lateral sources is more prominent with respect to the response predicted by the manufacturer. For this reason, the utilization of baffles to restrict SQMs field of view is analyzed to minimize the disturbance of lateral light sources and two different geometries are presented.

2.
Sensors (Basel) ; 19(23)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766418

ABSTRACT

The paper presents the calibration activity on the imaging system of the MINLU instrument, an autonomous sensor suite designed for monitoring light pollution using commercial off-the-shelf components. The system is extremely compact and with an overall mass below 3 kg can be easily installed as a payload for drones or sounding balloons. Drones and air balloons can in fact play an important role in completing upward light emission measurement from satellites allowing an increased spatial and time resolution from convenient altitudes and positions. The proposed system can efficiently measure the luminous intensity and the spectral power density of on-ground emissions providing a useful tool to identify polluting sources and to quantify upward light flux. The metrological performance of the imaging system has been verified through an extensive laboratory test activity using referenced light sources: the overall uncertainty of the multi-luminance meter has been calculated to be 7% of the reading, while the multi-spectrometer has shown a full width at half maximum (FWHM) equal to 10 nm within the measuring range between 400 nm and 700 nm. When operating at an altitude of 200 m, the system can achieve a horizontal resolution at a ground level of 0.12 m with a wavelength resolution able to identify the different lamp technology of outdoor light sources, including light-emitting diode (LED) lights that are undetected by satellites.

3.
Nature ; 450(7170): 641-5, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046396

ABSTRACT

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

4.
Nature ; 450(7170): 637-40, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046395

ABSTRACT

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...