Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 50(35): 8105-9, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21751319

ABSTRACT

Enantioenriched fluorinated heterocycles can be prepared through fluorocyclizations of prochiral indoles (see scheme; Ts=tosyl, Bn=benzyl, Boc=tert-butoxycarbonyl). More than twenty examples for this cascade fluorination-cyclization, which is catalyzed by cinchona alkaloids and employs N-fluorobenzenesulfonimide as the electrophilic fluorine source have been explored, and an unprecedented catalytic asymmetric difluorocyclization has also been identified.

2.
Bioorg Med Chem ; 19(11): 3451-61, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21550808
3.
J Med Chem ; 53(13): 4989-5001, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20527970

ABSTRACT

A pharmacophore model for triple reuptake inhibitors and the new class of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes were recently reported. Further investigation in this area led to the identification of a new series of potent and selective triple reuptake inhibitors endowed with good developability characteristics. Excellent bioavailability and brain penetration are associated with this series of 6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptanes together with high in vitro potency and selectivity at SERT, NET, and DAT. In vivo microdialysis experiments in different animal models and receptor occupancy studies in rat confirmed that derivative 17 showed an appropriate profile to guarantee further progression of the compound.


Subject(s)
Depressive Disorder/drug therapy , Heptanes/chemistry , Heptanes/pharmacology , Neurotransmitter Uptake Inhibitors/chemistry , Neurotransmitter Uptake Inhibitors/pharmacology , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacology , Brain/metabolism , Depressive Disorder/metabolism , Dopamine/metabolism , Heptanes/chemical synthesis , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Microdialysis , Models, Molecular , Neurotransmitter Uptake Inhibitors/chemical synthesis , Norepinephrine/metabolism , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Structure-Activity Relationship
4.
J Med Chem ; 53(6): 2534-51, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20170186

ABSTRACT

The discovery of new highly potent and selective triple reuptake inhibitors is reported. The new classes of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes are described together with detailed SAR. Appropriate decoration of the scaffolds was achieved with the help of a triple reuptake inhibitor pharmacophore model detailed here. Selected derivatives showed good oral bioavailability (>30%) and brain penetration (B/B > 4) in rats associated with high in vitro potency and selectivity at SERT, NET, and DAT. Among these compounds, microdialysis and in vivo experiments confirm that derivative 15 has an appropriate developability profile to be considered for further progression.


Subject(s)
Azabicyclo Compounds/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacokinetics , Binding, Competitive , Biogenic Monoamines/metabolism , Biological Availability , Biological Transport/drug effects , Cell Line , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Male , Mice , Microdialysis , Microsomes, Liver/metabolism , Models, Chemical , Molecular Structure , Motor Activity/drug effects , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Prefrontal Cortex/metabolism , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...