Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36982098

ABSTRACT

This paper compares cardiopulmonary and neuromuscular parameters across three running aerobic speeds in two conditions that differed from a treadmill's movement: flat condition (FC) and unpredictable roll variations similar to mountain trail running (URV). Twenty well-trained male runners (age 33 ± 8 years, body mass 70.3 ± 6.4 kg, height 1.77 ± 0.06 m, V˙O2max 63.8 ± 7.2 mL·kg-1·min-1) voluntarily participated in the study. Laboratory sessions consisted of a cardiopulmonary incremental ramp test (IRT) and two experimental protocols. Cardiopulmonary parameters, plasma lactate (BLa-), cadence, ground contact time (GT) and RPE values were assessed. We also recorded surface electromyographic (sEMG) signals from eight lower limb muscles, and we calculated, from the sEMG envelope, the amplitude and width of peak muscle activation for each step. Cardiopulmonary parameters were not significantly different between conditions (V˙O2: p = 0.104; BLa-: p = 0.214; HR: p = 0.788). The amplitude (p = 0.271) and width (p = 0.057) of sEMG activation peaks did not change between conditions. The variability of sEMG was significantly affected by conditions; indeed, the coefficient of variation in peak amplitude (p = 0.003) and peak width (p < 0.001) was higher in URV than in FC. Since the specific physical demands of running can differ between surfaces, coaches should resort to the use of non-traditional surfaces, emphasizing specific surface-related motor tasks that are normally observed in natural running environments. Seeing that the variability of muscle activations was affected, further studies are required to better understand the physiological effects induced by systematic surface-specific training and to define how variable-surface activities help injury prevention.


Subject(s)
Physical Endurance , Running , Male , Humans , Adult , Physical Endurance/physiology , Running/physiology , Muscle, Skeletal/physiology , Lower Extremity/physiology , Lactic Acid , Oxygen Consumption
2.
Res Q Exerc Sport ; 94(2): 476-484, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35412445

ABSTRACT

Purpose: In modern sprint cycling competitions, the athletes perform a preparatory movement that consists in reaching the backmost standing position, quickly accelerating the body forward at the starting signal. The purpose of this study was to investigate the kinematics of backward standing starts in elite cyclists, as well as the effect of initial crank angle. Methods: Video analysis of cycling starts was performed in seven male elite cyclists during 30 m sprints and in 3 starting conditions: seated with a self-selected crank angle (S-ss), backward standing from a self-selected (BSt-ss) or imposed crank angle of 90° (BSt-90°). Average velocity after 5 and 30 m was also measured by means of a photocell system. Results: No differences in starting crank angle were observed between BSt-ss and S-ss (about 64°). The fastest starts were attained in BSt-ss (highest velocity at 5 and 30 m); in this condition, angular downstroke velocity was the highest and the counter movement occurred earlier than in BSt-90°. Significant positive associations were observed between angular velocity in the first downstroke and forward velocity at 5 and 30 m. Conclusions: These findings indicate that backward standing starts improve cycling performance (compared to seated starts), that an initial crank angle < 90° is preferable, and that elite cyclists maintain the initial advantage at least up to a distance of 30 m.


Subject(s)
Bicycling , Standing Position , Humans , Male , Biomechanical Phenomena , Movement , Athletes
SELECTION OF CITATIONS
SEARCH DETAIL
...