Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Circ ; 13(2): e12237, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37287599

ABSTRACT

Many patients with pulmonary arterial hypertension (PAH) experience substantial delays in diagnosis, which is associated with worse outcomes and higher costs. Tools for diagnosing PAH sooner may lead to earlier treatment, which may delay disease progression and adverse outcomes including hospitalization and death. We developed a machine-learning (ML) algorithm to identify patients at risk for PAH earlier in their symptom journey and distinguish them from patients with similar early symptoms not at risk for developing PAH. Our supervised ML model analyzed retrospective, de-identified data from the US-based Optum® Clinformatics® Data Mart claims database (January 2015 to December 2019). Propensity score matched PAH and non-PAH (control) cohorts were established based on observed differences. Random forest models were used to classify patients as PAH or non-PAH at diagnosis and at 6 months prediagnosis. The PAH and non-PAH cohorts included 1339 and 4222 patients, respectively. At 6 months prediagnosis, the model performed well in distinguishing PAH and non-PAH patients, with area under the curve of the receiver operating characteristic of 0.84, recall (sensitivity) of 0.73, and precision of 0.50. Key features distinguishing PAH from non-PAH cohorts were a longer time between first symptom and the prediagnosis model date (i.e., 6 months before diagnosis); more diagnostic and prescription claims, circulatory claims, and imaging procedures, leading to higher overall healthcare resource utilization; and more hospitalizations. Our model distinguishes between patients with and without PAH at 6 months before diagnosis and illustrates the feasibility of using routine claims data to identify patients at a population level who might benefit from PAH-specific screening and/or earlier specialist referral.

2.
J Neurophysiol ; 116(3): 1488-97, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27440243

ABSTRACT

Based on different cognitive tasks and mapping methods, the human intraparietal sulcus (IPS) has been subdivided according to multiple different organizational schemes. The presence of topographically organized regions throughout IPS indicates a strong location-based processing in this brain region. However, visual short-term memory (VSTM) studies have shown that while a region in the inferior IPS region (inferior IPS) is involved in object individuation and selection based on location, a region in the superior IPS (superior IPS) primarily encodes and stores object featural information. Here, we determined the localization of these two VSTM IPS regions with respect to the topographic IPS regions in individual participants and the role of different IPS regions in location- and feature-based processing. Anatomically, inferior IPS showed an 85.2% overlap with topographic IPS regions, with the greatest overlap seen in V3A and V3B, and superior IPS showed a 73.6% overall overlap, with the greatest overlap seen in IPS0-2. Functionally, there appeared to be a partial overlap between IPS regions involved in location- and feature-based processing, with more inferior and medial regions showing a stronger location-based processing and more superior and lateral regions showing a stronger feature-based processing. Together, these results suggest that understanding the multiplex nature of IPS in visual cognition may not be reduced to examining the functions of the different IPS topographic regions, but rather, it can only be accomplished by understanding how regions identified by different tasks and methods may colocalize with each other.


Subject(s)
Memory, Short-Term/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Adult , Brain Mapping , Cognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Photic Stimulation , Young Adult
3.
Nat Neurosci ; 19(1): 150-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595654

ABSTRACT

Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.


Subject(s)
Attention/physiology , Brain Mapping/methods , Memory, Short-Term/physiology , Occipital Lobe/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Pattern Recognition, Visual/physiology , Young Adult
4.
J Cogn Neurosci ; 25(10): 1711-22, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23662863

ABSTRACT

The parietal cortex has been functionally divided into various subregions; however, very little is known about how these areas relate to each other. Two such regions are the transverse occipital sulcus (TOS) scene area and inferior intraparietal sulcus (IPS). TOS exhibits similar activation patterns to the scene selective parahippocampal place area, suggesting its role in scene perception. Inferior IPS, in contrast, has been shown to participate in object individuation and selection via location. Interestingly, both regions have been localized to the same general area of the brain. If these two were actually the same brain region, it would have important implications regarding these regions' role in cognition. To explore this, we first localized TOS and inferior IPS in individual participants and examined the degree of overlap between these regions in each participant. We found that TOS showed only a minor degree of overlap with inferior IPS (∼10%). We then directly explored the role of TOS and inferior IPS in object individuation and scene perception by examining their responses to furnished rooms, empty rooms, isolated furniture, and multiple isolated objects. If TOS and inferior IPS were the same region, we would expect to see similar response patterns in both. Instead, the response of TOS was predominantly scene selective, whereas activity in inferior IPS was primarily driven by the number of objects present in the display, regardless of scene context. These results show that TOS and inferior IPS are nearby but distinct regions, with different functional roles in visual cognition.


Subject(s)
Individuation , Occipital Lobe/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Occipital Lobe/blood supply , Oxygen , Parietal Lobe/blood supply , Photic Stimulation , Young Adult
5.
J Vis ; 11(10)2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21965551

ABSTRACT

Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.


Subject(s)
Attention/physiology , Memory, Short-Term/physiology , Visual Perception/physiology , Cues , Humans , Photic Stimulation/methods
6.
J Neurosci ; 30(38): 12581-8, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20861364

ABSTRACT

Visual short-term memory (VSTM) briefly maintains a limited sampling from the visual world. Activity in the intraparietal sulcus (IPS) tightly correlates with the number of items stored in VSTM. This activity may occur in or near to multiple distinct visuotopically mapped cortical areas that have been identified in IPS. To understand the topographic and spatial properties of VSTM, we investigated VSTM activity in visuotopic IPS regions using functional magnetic resonance imaging. VSTM drove areas IPS0-2, but largely spared IPS3-4. Under visual stimulation, these areas in both hemispheres code the contralateral visual hemifield. In contrast to the hemispheric symmetry observed with visual stimulation, an asymmetry emerged during VSTM with increasing memory load. The left hemisphere exhibited load-dependent activity only for contralateral memory items; right hemisphere activity reflected VSTM load regardless of visual-field location. Our findings demonstrate that VSTM induces a switch in spatial representation in right hemisphere IPS from contralateral to full-field coding. The load dependence of right hemisphere effects argues that memory-dependent and/or attention-dependent processes drive this change in spatial processing. This offers a novel means for investigating spatial-processing impairments in hemispatial neglect.


Subject(s)
Functional Laterality/physiology , Memory, Short-Term/physiology , Parietal Lobe/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Analysis of Variance , Attention/physiology , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Photic Stimulation , Psychomotor Performance/physiology
7.
J Vis ; 9(7): 9, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19761324

ABSTRACT

Mounting evidence suggests that visual attention may be simultaneously deployed to multiple distinct object locations, but the constraints upon this multi-object attentional system are still debated. Results from multiple object tracking (MOT) experiments have been interpreted as revealing a fixed attentional capacity limit of 4 objects, while other evidence has suggested that attentional capacity may be more fluid. Here, we investigated the influence of target stimulus factors, such as speed and size, and of distractor filtering factors, such as number of distractors and screen density, on MOT performance. Each factor had significant effects on capacity, producing values that ranged from above 6 objects down to one object, depending on the task demands. Although our results support the view that crowding effects modulate the effective capacity of attention, we also find evidence that central processes related to distractor suppression and target enhancement modulate capacity.


Subject(s)
Attention/physiology , Perceptual Masking , Pursuit, Smooth/physiology , Humans , Photic Stimulation/methods , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...