Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422022

ABSTRACT

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Subject(s)
Lymphoma, B-Cell , Repressor Proteins , Animals , Mice , Hypoxia/metabolism , Mixed Function Oxygenases/metabolism , Repressor Proteins/metabolism , Tumor Microenvironment
2.
J Vis Exp ; (197)2023 07 28.
Article in English | MEDLINE | ID: mdl-37578248

ABSTRACT

Tuberculosis (TB), the leading cause of death worldwide by an infectious agent, killed 1.6 million people in 2022, only being surpassed by COVID-19 during the 2019-2021 pandemic. The disease is caused by the bacterium Mycobacterium tuberculosis (M.tb). The Mycobacterium bovis strain Bacillus Calmette-Guérin (BCG), the only TB vaccine, is the oldest licensed vaccine in the world, still in use. Currently, there are 12 vaccines in clinical trials and dozens of vaccines under pre-clinical development. The method of choice used to assess the efficacy of TB vaccines in pre-clinical studies is the enumeration of bacterial colonies by the colony-forming units (CFU) assay. This time-consuming assay takes 4 to 6 weeks to conclude, requires substantial laboratory and incubator space, has high reagent costs, and is prone to contamination. Here we describe an optimized method for colony enumeration, the micro-CFU (mCFU), that offers a simple and rapid solution to analyze M.tb vaccine efficacy results. The mCFU assay requires tenfold fewer reagents, reduces the incubation period threefold, taking 1 to 2 weeks to conclude, reduces lab space and reagent cost, and minimizes the health and safety risks associated with working with large numbers of M.tb. Moreover, to evaluate the efficacy of a TB vaccine, samples may be obtained from a variety of sources, including tissues from vaccinated animals infected with Mycobacteria. We also describe an optimized method to produce a unicellular, uniform, and high-quality mycobacterial culture for infection studies. Finally, we propose that these methods should be universally adopted for pre-clinical studies of vaccine efficacy determination, ultimately leading to time reduction in the development of vaccines against TB.


Subject(s)
COVID-19 , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , COVID-19/prevention & control , Tuberculosis/prevention & control , Indicators and Reagents , BCG Vaccine
3.
Front Immunol ; 14: 1172691, 2023.
Article in English | MEDLINE | ID: mdl-37168860

ABSTRACT

The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Communicable Diseases , Malaria , Tuberculosis , Humans , HIV/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Tuberculosis/prevention & control , Malaria/prevention & control , RNA, Messenger/genetics
5.
Vaccines (Basel) ; 10(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36560462

ABSTRACT

Vaccine efficacy and immunogenicity depend on the host, pathogen, and pathogenesis of the disease [...].

6.
Sci Rep ; 12(1): 7808, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552463

ABSTRACT

Bacille Calmette-Guérin (BCG), the only currently licenced tuberculosis vaccine, may exert beneficial non-specific effects (NSE) in reducing infant mortality. We conducted a randomised controlled clinical study in healthy UK adults to evaluate potential NSE using functional in-vitro growth inhibition assays (GIAs) as a surrogate of protection from four bacteria implicated in infant mortality. Volunteers were randomised to receive BCG intradermally (n = 27) or to be unvaccinated (n = 8) and were followed up for 84 days; laboratory staff were blinded until completion of the final visit. Using GIAs based on peripheral blood mononuclear cells, we observed a significant reduction in the growth of the Gram-negative bacteria Escherichia coli and Klebsiella pneumonia following BCG vaccination, but no effect for the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae. There was a modest association between S. aureus nasal carriage and growth of S. aureus in the GIA. Our findings support a causal link between BCG vaccination and improved ability to control growth of heterologous bacteria. Unbiased assays such as GIAs are potentially useful tools for the assessment of non-specific as well as specific effects of TB vaccines. This study was funded by the Bill and Melinda Gates Foundation and registered with ClinicalTrials.gov (NCT02380508, 05/03/2015; completed).


Subject(s)
BCG Vaccine , Tuberculosis Vaccines , Adult , Humans , Infant , Leukocytes, Mononuclear , Staphylococcus aureus , Vaccination
7.
Vaccines (Basel) ; 10(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35062774

ABSTRACT

New strategies are required to reduce the worldwide burden of tuberculosis. Intracellular survival and replication of Mycobacterium tuberculosis after macrophage phagocytosis is a fundamental step in the complex host-pathogen interactions that lead to granuloma formation and disease. Greater understanding of how the bacterium survives and thrives in these environments will inform novel drug and vaccine discovery programs. Here, we use in-depth RNA sequencing of Mycobacterium bovis BCG from human THP-1 macrophages to describe the mycobacterial adaptations to the intracellular environment. We identify 329 significantly differentially regulated genes, highlighting cholesterol catabolism, the methylcitrate cycle and iron homeostasis as important for mycobacteria inside macrophages. Examination of multi-functional gene families revealed that 35 PE/PPE genes and five cytochrome P450 genes were upregulated 24 h after infection, highlighting pathways of potential significance. Comparison of the intracellular transcriptome to gene essentiality and immunogenicity studies identified 15 potential targets that are both required for intracellular survival and induced on infection, and eight upregulated genes that have been demonstrated to be immunogenic in TB patients. Further insight into these new and established targets will support drug and vaccine development efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...