Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinspir Biomim ; 19(1)2023 12 18.
Article in English | MEDLINE | ID: mdl-38016443

ABSTRACT

Operating outside the spacecraft via remotely controlled structures is an important opportunity in different space applications. The research in this area is focused on designing robots that are sufficiently flexible to allow inspection in locations where access is difficult or impossible for astronauts, while minimizing weight and bulk. The purpose of the research is to design a borescope for space applications with no hinges or other mechanisms, exploiting biomimetic design concepts. This is pursued by giving to the borescope a backbone exoskeleton provided by a continuous structure made of fibre reinforced composite material and using NiTi wires as tendons, taking advantage of their low weight and dimensions, which allow them to be embedded between the composite layers during the lamination process. After a study of the state of the art of flexible structures, concentrated in the medical and robotic fields, the research work unfolded in two phases. In the first design phase, several composite layup solutions were considered and analysed using finite element models, leading to the definition of the borescope geometrical parameters and to an initial estimate of the displacements that can be achieved. In the second experimental phase, seven prototypes were produced and tested, with one or more wires, to validate the design and to search for a configuration that can be actuated in different directions. The borescope prototypes resulted flexible enough to achieve an extended degree of bending and at the same time sufficiently rigid to allow complete rearm of the NiTi wires. The numerical and experimental study led to the definition of the design parameters, the number of wires, and the manufacturing technique to integrate NiTi actuators.


Subject(s)
Robotics , Shape Memory Alloys , Alloys/chemistry , Robotics/methods , Biomimetics
2.
COPD ; 17(4): 378-383, 2020 08.
Article in English | MEDLINE | ID: mdl-32586145

ABSTRACT

In patients with moderate-to-severe Chronic Obstructive Pulmonary Disorder (COPD), pulmonary hyperinflation can occur at rest and increase during episodes of exacerbation. Among other mechanical constraints, changes in position and configuration of the diaphragm are also induced by increased end-expiratory lung volume. Both descent and flattening of diaphragm might damage the phrenic nerves by stretching their fibers. The study aimed to investigate the phrenic nerve conduction in COPD patients in stable conditions and during COPD exacerbation. In a group of 11 COPD patients without relevant comorbidities in stable conditions and subsequently in another group of 10 COPD patients during in-hospital COPD exacerbation and recovery, measurements of functional respiratory parameters and assessment of phrenic nerves motor conduction by bilateral electric stimulation were performed concurrently. Significant increase in phrenic nerves latency (p < 0.05), but similar amplitude of motor compound muscle action potential (cMAP) was observed in stable COPD patients vs. matched controls (p < 0.05). However, in COPD patients with resting pulmonary hyperinflation as reliably detected by substantial Inspiratory Capacity reduction (<80% pred.), the mean bilateral latency was longer vs. COPD patients without pulmonary hyperinflation (p < 0.02). During COPD exacerbation, in contrast with mean latency, the mean amplitude of phrenic nerves cMAP improved at discharge when compared with in-hospital admission (p < 0.05). In stable COPD patients the velocity of phrenic nerve conduction was impaired mostly in the presence of pulmonary hyperinflation, while during COPD exacerbation where dynamic pulmonary hyperinflation abruptly occurs, the reversible decrease of cMAP amplitude does suggest a temporary, acute axonal damage of phrenic nerves, potentially contributing to diaphragmatic dysfunction in these circumstances.


Subject(s)
Inspiratory Capacity/physiology , Neural Conduction/physiology , Phrenic Nerve/physiopathology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Aged, 80 and over , Diaphragm/physiopathology , Disease Progression , Female , Humans , Lung Volume Measurements , Male , Middle Aged , Reaction Time/physiology , Recovery of Function/physiology , Respiratory Mechanics/physiology
3.
Sensors (Basel) ; 20(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455732

ABSTRACT

Inductive measurement of magnetic fields is a diagnostic technique widely used in several scientific fields, such as magnetically confined fusion, plasma thrusters and particle accelerators, where real time control and detailed characterization of physics phenomena are required. The accuracy of the measured data strongly influences the machine controllability and the scientific results. In the framework of the assembly modifications of the RFX-mod experiment, a complete renew and improvement of the magnetic diagnostic system, from the probes moved inside the vacuum vessel to the integrator modules, has been carried out. In this paper, the whole system making up the magnetic diagnostics is described, following the acquisition chain from the probe to the streamed data and illustrating the requirements and conflicting limitations which affect the different components, in order to provide a comprehensive overview useful for an integrated design of any new systems. The characterization of a prototypical implementation of the whole acquisition chain is presented, focusing on the flexible ADC architecture adopted for providing a purely numerical signal integration, highlighting the advantages that this technology offers in terms of flexibility, compactness and cost effectiveness, along with the limitations found in existing implementation in terms of ADC noise characteristics and their possible solutions.

4.
Sensors (Basel) ; 15(1): 1321-41, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25587979

ABSTRACT

The interest of the aerospace industries in structural health and usage monitoring systems is continuously increasing. Among the techniques available in literature those based on Fibre Bragg Grating sensors are much promising thanks to their peculiarities. Different Chirped Bragg Grating sensor configurations have been investigated in this paper. Starting from a numerical model capable of simulating the spectral response of a grating subjected to a generic strain profile (direct problem), a new code has been developed, allowing strain reconstruction from the experimental validation of the program, carried out through different loading cases applied on a chirped grating. The wavelength of the reflection spectrum for a chirped FBG has a one-to-one correspondence to the position along the gauge section, thus allowing strain reconstruction over the entire sensor length. Tests conducted on chirped FBGs also evidenced their potential for SHM applications, if coupled with appropriate numerical strain reconstructions tools. Finally, a new class of sensors-Draw Tower Grating arrays-has been studied. These sensors are applicable to distributed sensing and load reconstruction over large structures, thanks to their greater length. Three configurations have been evaluated, having different spatial and spectral characteristics, in order to explore possible applications of such sensors to SHM systems.


Subject(s)
Construction Industry , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Optical Fibers , Algorithms , Materials Testing , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...