Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8581, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237065

ABSTRACT

Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform ( https://ausgeochem.auscope.org.au ) and freely accessible to scientists from around the world. To demonstrate the power of the platform, three regional datasets from Kenya, Australia and the Red Sea are placed in their 4D geological, geochemical, and geographic contexts, revealing insights into the tectono-thermal evolutions of these areas. Beyond facilitating data interpretation, the archival of fission track and (U-Th)/He (meta-)data in relational schemas unlocks future potential for greater integration of thermochronology and numerical geoscience techniques. The power of formatting data to interface with external tools is demonstrated through the integration of GPlates Web Service with AusGeochem, enabling thermochronology data to be readily viewed in their paleogeographic context through deep time from within the platform.

2.
Nat Commun ; 13(1): 4437, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915061

ABSTRACT

The Cenozoic landscape evolution in southwestern North America is ascribed to crustal isostasy, dynamic topography, or lithosphere tectonics, but their relative contributions remain controversial. Here we reconstruct landscape history since the late Eocene by investigating the interplay between mantle convection, lithosphere dynamics, climate, and surface processes using fully coupled four-dimensional numerical models. Our quantified depth-dependent strain rate and stress history within the lithosphere, under the influence of gravitational collapse and sub-lithospheric mantle flow, show that high gravitational potential energy of a mountain chain relative to a lower Colorado Plateau can explain extension directions and stress magnitudes in the belt of metamorphic core complexes during topographic collapse. Profound lithospheric weakening through heating and partial melting, following slab rollback, promoted this extensional collapse. Landscape evolution guided northeast drainage onto the Colorado Plateau during the late Eocene-late Oligocene, south-southwest drainage reversal during the late Oligocene-middle Miocene, and southwest drainage following the late Miocene.

SELECTION OF CITATIONS
SEARCH DETAIL
...