Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Transpl ; 28(11): 1766-1775, 2022 11.
Article in English | MEDLINE | ID: mdl-35666175

ABSTRACT

Leukocyte telomere length (LTL) is a marker for biological age. Pediatric liver transplant recipients show a high rate of subclinical atherosclerosis, indicated by elevated intima-media thickness (IMT). We hypothesized that atherosclerosis is associated with biological age in these patients and investigated the course of LTL over time. We measured LTL from peripheral blood leukocytes by quantitative polymerase chain reaction and IMT from 97 pediatric patients after liver transplantation in a prospective cohort study. Of the patients, 71% (n = 69) had two or more assessments (total, 228 observations; median follow-up, 1.1 years). Lower LTL was associated with higher IMT (ß = -0.701, p = 0.01) and higher aspartate aminotransferase (ß = -0.001, p = 0.02), adjusted for age, sex, and age at transplantation. Of the patients, 45% showed decreasing LTL over time, whereas 55% exhibited stable LTL. Patients with stable LTL showed a decrease in IMT (median, -0.02 mm/year) and a decrease of tacrolimus trough levels (median, -0.08 µg/L/year). LTL is associated with IMT independent of age in pediatric liver transplant patients, suggesting that early aging contributes to the high burden of subclinical cardiovascular damage and may furthermore negatively affect the graft.


Subject(s)
Atherosclerosis , Liver Transplantation , Aspartate Aminotransferases , Atherosclerosis/epidemiology , Atherosclerosis/etiology , Carotid Intima-Media Thickness , Child , Humans , Leukocytes , Liver Transplantation/adverse effects , Prospective Studies , Tacrolimus , Telomere
2.
J Am Soc Nephrol ; 30(6): 1021-1035, 2019 06.
Article in English | MEDLINE | ID: mdl-31040189

ABSTRACT

BACKGROUND: The etiology of steroid-resistant nephrotic syndrome, which manifests as FSGS, is not completely understood. Aberrant glycosylation is an often underestimated factor for pathologic processes, and structural changes in the glomerular endothelial glycocalyx have been correlated with models of nephrotic syndrome. Glycans are frequently capped by sialic acid (Sia), and sialylation's crucial role for kidney function is well known. Human podocytes are highly sialylated; however, sialylation's role in podocyte homeostasis remains unclear. METHODS: We generated a podocyte-specific sialylation-deficient mouse model (PCmas-/- ) by targeting CMP-Sia synthetase, and used histologic and ultrastructural analysis to decipher the phenotype. We applied CRISPR/Cas9 technology to generate immortalized sialylation-deficient podocytes (asialo-podocytes) for functional studies. RESULTS: Progressive loss of sialylation in PCmas-/- mice resulted in onset of proteinuria around postnatal day 28, accompanied by foot process effacement and loss of slit diaphragms. Podocyte injury led to severe glomerular defects, including expanded capillary lumen, mesangial hypercellularity, synechiae formation, and podocyte loss. In vivo, loss of sialylation resulted in mislocalization of slit diaphragm components, whereas podocalyxin localization was preserved. In vitro, asialo-podocytes were viable, able to proliferate and differentiate, but showed impaired adhesion to collagen IV. CONCLUSIONS: Loss of cell-surface sialylation in mice resulted in disturbance of podocyte homeostasis and FSGS development. Impaired podocyte adhesion to the glomerular basement membrane most likely contributed to disease development. Our data support the notion that loss of sialylation might be part of the complex process causing FSGS. Sialylation, such as through a Sia supplementation therapy, might provide a new therapeutic strategy to cure or delay FSGS and potentially other glomerulopathies.


Subject(s)
Glomerulosclerosis, Focal Segmental/pathology , Podocytes/pathology , Sialic Acids/metabolism , Animals , Cell Proliferation , Cell Survival , Disease Models, Animal , Glomerulosclerosis, Focal Segmental/physiopathology , Glycosylation , Humans , Mice , Models, Animal , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...