Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(4): 047702, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437430

ABSTRACT

Josephson junctions defined in strong spin orbit semiconductors are highly interesting for the search for topological systems. However, next to topological edge states that emerge in a sufficient magnetic field, trivial edge states can also occur. We study the trivial edge states with superconducting quantum interference measurements on nontopological InAs Josephson junctions. We observe a SQUID pattern, an indication of superconducting edge transport. Also, a remarkable h/e SQUID signal is observed that, as we find, stems from crossed Andreev states.

2.
Phys Rev Lett ; 118(1): 016801, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106408

ABSTRACT

Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in e^{2}/h steps and a nontrivial Berry phase.

3.
Nano Lett ; 16(12): 7509-7513, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27805409

ABSTRACT

Because of a strong spin-orbit interaction and a large Landé g-factor, InSb plays an important role in research on Majorana fermions. To further explore novel properties of Majorana fermions, hybrid devices based on quantum wells are conceived as an alternative approach to nanowires. In this work, we report a pronounced conductance quantization of quantum point contact devices in InSb/InAlSb quantum wells. Using a rotating magnetic field, we observe a large in-plane (|g1| = 26) and out-of-plane (|g1| = 52) g-factor anisotropy. Additionally, we investigate crossings of subbands with opposite spins and extract the electron effective mass from magnetic depopulation of one-dimensional subbands.

4.
Phys Rev Lett ; 117(7): 077701, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563999

ABSTRACT

A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically predicted topological system with a temperature-insensitive linear resistivity per unit length in the range of 2 kΩ/µm. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n type.

6.
Nano Lett ; 15(10): 6883-8, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26375825

ABSTRACT

Electrostatic gating is essential for defining and control of semiconducting devices. However, nanofabrication processes required for depositing gates inevitably degrade the pristine quality of the material of interest. Examples of materials that suffer from such degradation include ultrahigh mobility GaAs/AlGaAs two-dimensional electron gases (2DEGs), graphene, topological insulators, and nanowires. To preserve the pristine material properties, we have developed a flip-chip setup where gates are separated from the material by a vacuum, which allows nanoscale electrostatic gating of the material without exposing it to invasive nanoprocessing. An additional benefit is the vacuum between gates and material, which, unlike gate dielectrics, is free from charge traps. We demonstrate the operation and feasibility of the flip-chip setup by achieving quantum interference at integer quantum Hall states in a Fabry-Pérot interferometer based on a GaAs/AlGaAs 2DEG. Our results pave the way for the study of exotic phenomena including fragile fractional quantum Hall states by preserving the high quality of the material.

7.
Phys Rev Lett ; 115(3): 036803, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230816

ABSTRACT

Among the theoretically predicted two-dimensional topological insulators, InAs/GaSb double quantum wells (DQWs) have a unique double-layered structure with electron and hole gases separated in two layers, which enables tuning of the band alignment via electric and magnetic fields. However, the rich trivial-topological phase diagram has yet to be experimentally explored. We present an in situ and continuous tuning between the trivial and topological insulating phases in InAs/GaSb DQWs through electrical dual gating. Furthermore, we show that an in-plane magnetic field shifts the electron and hole bands relatively to each other in momentum space, functioning as a powerful tool to discriminate between the topologically distinct states.

8.
Nat Nanotechnol ; 10(7): 593-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25961510

ABSTRACT

Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...