Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(12): e9566, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36479032

ABSTRACT

Cryptic species diversity is known to be common in bats but remains challenging to study in these mammals, whose natural history traits render their sampling and monitoring challenging. For these animals, indirect genetic approaches provide a powerful tool to gain insight into the evolutionary history and ecology of cryptic bat species. The speciation history of the polyphyletic Chaerephon pumilus species group (Molossidae) is poorly understood, including those found on western Indian Ocean islands. Two species in this complex have been identified in the Comoros: C. pusillus and C. leucogaster. Here, we aim to genetically characterize these two species and investigate their spatial population genetic structure. Analyzing five nuclear microsatellite markers from 200 individuals and one mitochondrial DNA gene (Cyt-b) from 161 (out of the 200) individuals sampled on Madagascar and the Comoros, our findings indicated that these species are genetically differentiated. We observed mitonuclear discordance in numerous individuals (33% of the 161 mtDNA-sequenced individuals). Based on ABC analyses, we found that this pattern could potentially be the result of asymmetric introgressive hybridization from C. leucogaster to C. pusillus and calls for further studies on the demographic history of these species. Moreover, at the intra-specific level, analyses of the microsatellite loci suggested the evidence of a more pronounced, although weak, geographically based genetic structure in C. pusillus than in C. leucogaster. Altogether, our findings provide preliminary insights into the eco-evolutionary aspects of this species complex and warrant further research to understand hybridization dynamics and mechanisms responsible for mitonuclear discordance.

2.
PLoS One ; 7(1): e30388, 2012.
Article in English | MEDLINE | ID: mdl-22291947

ABSTRACT

Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ(13)C and δ(15)N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.


Subject(s)
Animal Migration/physiology , Chiroptera/physiology , Radioactive Tracers , Reproduction/physiology , Animals , Behavior, Animal/physiology , Demography , Europe , Germany , Goats , Horses , Population Dynamics , Sheep , Spain , Sweden , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...