Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Neurol Neurosurg Psychiatry ; 92(7): 769-775, 2021 07.
Article in English | MEDLINE | ID: mdl-33731439

ABSTRACT

INTRODUCTION: In addition to tau pathology and neuronal loss, neuroinflammation occurs in progressive supranuclear palsy (PSP). However, the prognostic value of the in vivo imaging markers for these processes in PSP remains unclear. We test the primary hypothesis that baseline in vivo imaging assessment of neuroinflammation in subcortical regions predicts clinical progression in patients with PSP. METHODS: Seventeen patients with PSP-Richardson's syndrome underwent a baseline multimodal imaging assessment, including [11C]PK11195 positron emission tomography (PET) to index microglial activation, [18F]AV-1451 PET for tau pathology and structural MRI. Disease severity was measured at baseline and serially up to 4 years with the Progressive Supranuclear Palsy Rating Scale (PSPRS) (average interval of 5 months). Regional grey-matter volumes and PET ligand binding potentials were summarised by three principal component analyses (PCAs). A linear mixed-effects model was applied to the longitudinal PSPRS scores. Single-modality imaging predictors were regressed against the individuals' estimated rate of progression to identify the prognostic value of baseline imaging markers. RESULTS: PCA components reflecting neuroinflammation and tau burden in the brainstem and cerebellum correlated with the subsequent annual rate of change in the PSPRS. PCA-derived PET markers of neuroinflammation and tau pathology correlated with regional brain volume in the same regions. However, MRI volumes alone did not predict the rate of clinical progression. CONCLUSIONS: Molecular imaging with PET for microglial activation and tau pathology can predict clinical progression in PSP. These data encourage the evaluation of immunomodulatory approaches to disease-modifying therapies in PSP and the potential for PET to stratify patients in early phase clinical trials.


Subject(s)
Brain/pathology , Encephalitis/pathology , Supranuclear Palsy, Progressive/pathology , Aged , Brain/diagnostic imaging , Disease Progression , Encephalitis/diagnostic imaging , Encephalitis/metabolism , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Prognosis , Severity of Illness Index , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , tau Proteins/metabolism
2.
J Neurol Neurosurg Psychiatry ; 92(3): 319-322, 2021 03.
Article in English | MEDLINE | ID: mdl-33122395

ABSTRACT

INTRODUCTION: We report in vivo patterns of neuroinflammation and abnormal protein aggregation in seven cases of familial frontotemporal dementia (FTD) with mutations in MAPT, GRN and C9orf72 genes. METHODS: Using positron emission tomography (PET), we explored the association of the distribution of activated microglia, as measured by the radioligand [11C]PK11195, and the regional distribution of tau or TDP-43 pathology, indexed using the radioligand [18F]AV-1451. The familial FTD PET data were compared with healthy controls. RESULTS: Patients with familial FTD across all mutation groups showed increased [11C]PK11195 binding predominantly in frontotemporal regions, with additional regions showing abnormalities in individuals. Patients with MAPT mutations had a consistent distribution of [18F]AV-1451 binding across the brain, with heterogeneous distributions among carriers of GRN and C9orf72 mutations. DISCUSSION: This case series suggests that neuroinflammation is part of the pathophysiology of familial FTD, warranting further consideration of immunomodulatory therapies for disease modification and prevention.


Subject(s)
Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Aged , C9orf72 Protein/genetics , Female , Frontotemporal Dementia/genetics , Humans , Male , Middle Aged , Positron-Emission Tomography , Progranulins/genetics , tau Proteins/genetics
3.
J Alzheimers Dis ; 76(1): 331-340, 2020.
Article in English | MEDLINE | ID: mdl-32444550

ABSTRACT

BACKGROUND: The changes of cortical structure in Alzheimer's disease (AD) and frontotemporal dementia (FTD) are usually described in terms of atrophy. However, neurodegenerative diseases may also affect the complexity of cortical shape, such as the fractal dimension of the brain surface. OBJECTIVE: In this study, we aimed at assessing the regional patterns of cortical thickness and fractal dimension changes in a cross-sectional cohort of patients with AD and FTD. METHODS: Thirty-two people with symptomatic AD-pathology (clinically probable AD, n = 18, and amyloid-positive mild cognitive impairment, n = 14), 24 with FTD and 28 healthy controls underwent high-resolution 3T structural brain MRI. Using surface-based morphometry, we created vertex-wise cortical thickness and fractal dimension maps for group comparisons and correlations with cognitive measures in AD and FTD. RESULTS: In addition to the well-established pattern of cortical thinning encompassing temporoparietal regions in AD and frontotemporal areas in FTD, we observed reductions of fractal dimension encompassing cingulate areas and insula for both conditions, but specifically involving orbitofrontal cortex and paracentral gyrus for FTD (FDR p < 0.05). Correlational analyses between fractal dimension and cognition showed that these regions were particularly vulnerable with regards to memory and language impairment, especially in FTD. CONCLUSION: While the present study demonstrates globally similar patterns of fractal dimension changes in AD and FTD, we observed distinct cortical complexity correlates of cognitive domains impairment. Further studies are required to assess cortical complexity measures at earlier disease stages (e.g., in prodromal/asymptomatic carriers of FTD-related gene mutations) and determine whether fractal dimension represents a sensitive imaging marker for prevention and diagnostic strategies.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cognition/physiology , Frontotemporal Dementia/diagnostic imaging , Systems Analysis , Aged , Aged, 80 and over , Alzheimer Disease/psychology , Atrophy/diagnostic imaging , Cohort Studies , Cross-Sectional Studies , Female , Frontotemporal Dementia/psychology , Humans , Male , Middle Aged
4.
J Neurol ; 267(2): 341-349, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31641878

ABSTRACT

OBJECTIVES: Progressive supranuclear palsy (PSP) is characterized by deposition of straight filament tau aggregates in the grey matter (GM) of deep nuclei and cerebellum. We examined the relationship between tau pathology (assessed via 18F-AV1451 PET) and multimodal MRI imaging using GM volume, cortical thickness (CTh), and diffusion tensor imaging (DTI). METHODS: Twenty-three people with clinically probable PSP-Richardson's syndrome (age 68.8 ± 5.8 years, 39% female) and 23 controls underwent structural 3 T brain MRI including DTI. Twenty-one patients also had 18F-AV1451 PET imaging. Voxelwise volume-based morphometry, surface-based morphometry, and DTI correlations were performed with 18F-AV1451 binding in typical PSP regions of interest (putamen, thalamus and dentate cerebellum). Clinical impairment was also assessed in relation to the different imaging modalities. RESULTS: PSP subjects showed GM volume loss in frontotemporal regions, basal ganglia, midbrain, and cerebellum (FDR-corrected p < 0.05), reduced CTh in the left entorhinal and fusiform gyrus (p < 0.001) as well as DTI changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus (FWE-corrected p < 0.05). In PSP, higher 18F-AV1451 binding correlated with GM volume loss in frontal regions, DTI changes in motor tracts, and cortical thinning in parietooccipital areas. Cognitive impairment was related to decreased GM volume in frontotemporal regions, thalamus and pallidum, as well as DTI alteration in corpus callosum and cingulum. CONCLUSION: This cross-sectional study demonstrates an association between in vivo proxy measures of tau pathology and grey and white matter degeneration in PSP. This adds to the present literature about the complex interplay between structural changes and protein deposition.


Subject(s)
Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Positron-Emission Tomography , Supranuclear Palsy, Progressive/diagnostic imaging , White Matter/diagnostic imaging , tau Proteins/metabolism , Aged , Aged, 80 and over , Carbolines , Cross-Sectional Studies , Diffusion Tensor Imaging , Female , Gray Matter/metabolism , Gray Matter/pathology , Humans , Male , Middle Aged , Multimodal Imaging , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...