Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 42(3): 431-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24389421

ABSTRACT

Absorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques. Furthermore, the pharmacokinetics and distribution of the cationic lipid (one of the main excipients of the LNP vehicle) were investigated by LC-MS and matrix-assisted laser desorption ionization mass spectrometry imaging techniques, respectively. Following i.v. administration of [(3)H]-SSB siRNA in the LNP vehicle, the concentration of parent guide strand could be determined up to 168 hours p.d. (post dose), which was ascribed to the use of the vehicle. This was significantly longer than what was observed after i.v. administration of the unformulated [(3)H]-SSB siRNA, where no intact parent guide strand could be observed 5 minutes post dosing. The disposition of the siRNA was determined by the pharmacokinetics of the formulated LNP vehicle itself. In this study, the radioactivity was widely distributed throughout the body, and the total radioactivity concentration was determined in selected tissues. The highest concentrations of radioactivity were found in the spleen, liver, esophagus, stomach, adrenal, and seminal vesicle wall. In conclusion, the LNP vehicle was found to drive the kinetics and biodistribution of the SSB siRNA. The renal clearance was significantly reduced and its exposure in plasma significantly increased compared with the unformulated [(3)H]-SSB siRNA.


Subject(s)
Drug Carriers/metabolism , Lipids/pharmacokinetics , Nanoparticles/metabolism , RNA, Small Interfering/metabolism , Animals , Autoradiography , Chromatography, High Pressure Liquid , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Stability , Injections, Intravenous , Lipids/blood , Lipids/chemistry , Male , Mice , Mice, Inbred Strains , Nanoparticles/chemistry , RNA, Small Interfering/blood , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Distribution , Tritium , Whole-Body Counting
2.
J Med Case Rep ; 5: 89, 2011 Mar 02.
Article in English | MEDLINE | ID: mdl-21366915

ABSTRACT

INTRODUCTION: Tumoral calcinosis is an uncommon disorder characterized by the development of calcified masses within the peri-articular soft tissues of large joints, but rarely occurs within the hand. CASE PRESENTATION: We present the case of a 31-year-old pregnant Indian woman with a three-month history of painful swelling within the tip of her right middle finger following a superficial laceration. She was otherwise well and had normal serum calcium and phosphate levels. Plain radiography demonstrated a dense, lobulated cluster of calcified nodules within the soft tissues of the volar pulp space, consistent with a diagnosis of tumoral calcinosis. This diagnosis was confirmed on the basis of the histopathological examination following surgical excision. CONCLUSION: To the best of our knowledge, we present the only reported case of acral tumoral calcinosis within the finger, and the first description of its occurrence during pregnancy. We review the etiology, pathogenesis and treatment of tumoral calcinosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...