Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soc Cogn Affect Neurosci ; 15(11): 1193-1202, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33068110

ABSTRACT

Researchers, parents and educators consistently observe a stark mismatch between biologically preferred and socially imposed sleep-wake hours in adolescents, fueling debate about high school start times. We contribute neural evidence to this debate with electroencephalogram data collected from high school students during their regular morning, mid-morning and afternoon classes. Overall, student alpha power was lower when class content was taught via videos than through lectures. Students' resting state alpha brain activity decreased as the day progressed, consistent with adolescents being least attentive early in the morning. During the lessons, students showed consistently worse performance and higher alpha power for early morning classes than for mid-morning classes, while afternoon quiz scores and alpha levels varied. Together, our findings demonstrate that both class activity and class time are reflected in adolescents' brain states in a real-world setting, and corroborate educational research suggesting that mid-morning may be the best time to learn.


Subject(s)
Attention/physiology , Brain/physiology , Circadian Rhythm/physiology , Learning/physiology , Schools , Sleep/physiology , Students/psychology , Adolescent , Electroencephalography , Female , Humans , Male , Time Factors
2.
Proc Natl Acad Sci U S A ; 116(20): 10113-10121, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31019082

ABSTRACT

A body of research demonstrates convincingly a role for synchronization of auditory cortex to rhythmic structure in sounds including speech and music. Some studies hypothesize that an oscillator in auditory cortex could underlie important temporal processes such as segmentation and prediction. An important critique of these findings raises the plausible concern that what is measured is perhaps not an oscillator but is instead a sequence of evoked responses. The two distinct mechanisms could look very similar in the case of rhythmic input, but an oscillator might better provide the computational roles mentioned above (i.e., segmentation and prediction). We advance an approach to adjudicate between the two models: analyzing the phase lag between stimulus and neural signal across different stimulation rates. We ran numerical simulations of evoked and oscillatory computational models, showing that in the evoked case,phase lag is heavily rate-dependent, while the oscillatory model displays marked phase concentration across stimulation rates. Next, we compared these model predictions with magnetoencephalography data recorded while participants listened to music of varying note rates. Our results show that the phase concentration of the experimental data is more in line with the oscillatory model than with the evoked model. This finding supports an auditory cortical signal that (i) contains components of both bottom-up evoked responses and internal oscillatory synchronization whose strengths are weighted by their appropriateness for particular stimulus types and (ii) cannot be explained by evoked responses alone.


Subject(s)
Auditory Cortex/physiology , Models, Biological , Music , Biological Clocks , Humans , Speech Acoustics
3.
J Cogn Neurosci ; 31(3): 401-411, 2019 03.
Article in English | MEDLINE | ID: mdl-29708820

ABSTRACT

How does the human brain support real-world learning? We used wireless electroencephalography to collect neurophysiological data from a group of 12 senior high school students and their teacher during regular biology lessons. Six scheduled classes over the course of the semester were organized such that class materials were presented using different teaching styles (videos and lectures), and students completed a multiple-choice quiz after each class to measure their retention of that lesson's content. Both students' brain-to-brain synchrony and their content retention were higher for videos than lectures across the six classes. Brain-to-brain synchrony between the teacher and students varied as a function of student engagement as well as teacher likeability: Students who reported greater social closeness to the teacher showed higher brain-to-brain synchrony with the teacher, but this was only the case for lectures-that is, when the teacher is an integral part of the content presentation. Furthermore, students' retention of the class content correlated with student-teacher closeness, but not with brain-to-brain synchrony. These findings expand on existing social neuroscience research by showing that social factors such as perceived closeness are reflected in brain-to-brain synchrony in real-world group settings and can predict cognitive outcomes such as students' academic performance.


Subject(s)
Brain/physiology , Interpersonal Relations , Learning/physiology , School Teachers , Students , Adolescent , Electroencephalography , Female , Humans , Male , Schools
SELECTION OF CITATIONS
SEARCH DETAIL
...