Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antibiotics (Basel) ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38391572

ABSTRACT

The treatment of fungal bone infections and infected non-unions is a huge challenge in modern trauma and orthopedics, which normally contain the local and systemic administration of anti-fungal drugs. Although frequently used, little is known about the impact of systemic and locally administered fungicides on the osteogenic regenerative capabilities of infected bone tissue, especially upon the osteogenesis of human bone marrow mesenchymal stem cells (BM-hMSCs). This study evaluates the effects of the three most common fungicides for the systemic treatment of bone infections, Voriconazole (VOR), liposomal Amphotericin B (LAMB), and Fluconazole (FLU), as well as the effects of VOR and LAMB-loaded Polymethylmethacrylate (PMMA) cement chips in different concentrations upon the osteogenic response of BM-hMSCs in vitro. Within this study, we compared the ability of BM-hMSC to differentiate into osteoblast-like cells and synthesize hydroxyapatite as assessed by radioactive 99mTechnetium-Hydroxydiphosphonate (99mTc-HDP) labeling, cell proliferation, and analyses of supernatants upon various osteogenic parameters. Our results revealed that VOR added to the cell culture medium affects the osteogenic potential of BM-hMSC negatively, while there were no detectable effects of LAMB and FLU. Moreover, we showed dose-dependent negative effects of high- and extended-dose fungicide-loaded PMMA cement due to cytotoxicity, with a higher cytotoxic potential of VOR than LAMB, while low-dose fungicide-loaded PMMA had no significant effect on the osteogenic potential of BM-hMSC in vitro.

2.
Antibiotics (Basel) ; 13(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38247603

ABSTRACT

Antibiotic-loaded PMMA bone cement is frequently used in modern trauma and orthopedic surgery. Although many of the antibiotics routinely applied are described to have cytotoxic effects in the literature, clinical experience shows no adverse effects for bone healing. To determine the effects of antibiotic-loaded PMMA spacers on osteogenesis in vitro, we cultivated human bone marrow mesenchymal stem cells (BM-hMSCs) in the presence of PMMA spacers containing Gentamicin, Vancomycin, Gentamicin + Clindamycin as well as Gentamicin + Vancomycin in addition to a blank control (agarose) and PMMA containing no antibiotics. The cell number was assessed with DAPI staining, and the osteogenic potential was evaluated by directly measuring the amount of hydroxyapatite synthesized using radioactive 99mTc-HDP labelling as well as measuring the concentration of calcium and phosphate in the cell culture medium supernatant. The results showed that Gentamicin and Vancomycin as well as their combination show a certain amount of cytotoxicity but no negative effect on osteogenic potential. The combination of Gentamicin and Clindamycin, on the other hand, led to a drastic reduction in both the cell count and the osteogenic potential.

3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555513

ABSTRACT

99-Metastabil Technetium (99mTc) is a radiopharmaceutical widely used in skeletal scintigraphy. Recent publications show it can also be used to determine the osteogenic potential of human mesenchymal stem cells (hMSCs) by binding to hydroxyapatite formed during bone tissue engineering. This field lacks non-destructive methods to track live osteogenic differentiation of hMSCs. However, no data about the uptake kinetics of 99mTc and its effect on osteogenesis of hMSCs have been published yet. We therefore evaluated the saturation time of 99mTc by incubating hMSC cultures for different periods, and the saturation concentration by using different amounts of 99mTc activity for incubation. The influence of 99mTc on osteogenic potential of hMSCs was then evaluated by labeling a continuous hMSC culture three times over the course of 3 weeks, and comparing the findings to cultures labeled once. Our findings show that 99mTc saturation time is less than 0.25 h, and saturation concentration is between 750 and 1000 MBq. Repeated exposure to γ-radiation emitted by 99mTc had no negative effects on hMSC cultures. These new insights can be used to make this highly promising method broadly available to support researchers in the field of bone tissue engineering using this method to track and evaluate, in real-time, the osteogenic differentiation of hMSC, without any negative influence on the cell viability, or their osteogenic differentiation potential.


Subject(s)
Bone and Bones , Osteogenesis , Humans , Cell Culture Techniques , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...