Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(6): e0024424, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780510

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE: Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.


Subject(s)
Bacteriocins , Cysteine , Thiazoles , Thiazoles/metabolism , Cysteine/metabolism , Bacteriocins/metabolism , Bacteriocins/chemistry , Bacteriocins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Processing, Post-Translational , Escherichia coli/genetics , Escherichia coli/metabolism
2.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961320

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.

3.
Proc Natl Acad Sci U S A ; 113(44): 12450-12455, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27791142

ABSTRACT

Thiopeptides, including micrococcins, are a growing family of bioactive natural products that are ribosomally synthesized and heavily modified. Here we use a refactored, modular in vivo system containing the micrococcin P1 (MP1) biosynthetic genes (TclIJKLMNPS) from Macrococcus caseolyticus str 115 in a genetically tractable Bacillus subtilis strain to parse the processing steps of this pathway. By fusing the micrococcin precursor peptide to an affinity tag and coupling it with catalytically defective enzymes, biosynthetic intermediates were easily captured for analysis. We found that two major phases of molecular maturation are separated by a key C-terminal processing step. Phase-I conversion of six Cys residues to thiazoles (TclIJN) is followed by C-terminal oxidative decarboxylation (TclP). This TclP-mediated oxidative decarboxylation is a required step for the peptide to progress to phase II. In phase II, Ser/Thr dehydration (TclKL) and peptide macrocycle formation (TclM) occurs. A C-terminal reductase, TclS, can optionally act on the substrate peptide, yielding MP1, and is shown to act late in the pathway. This comprehensive characterization of the MP1 pathway prepares the way for future engineering efforts.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Peptides/metabolism , Staphylococcaceae/metabolism , Amino Acid Sequence , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriocins/chemistry , Bacteriocins/genetics , Biosynthetic Pathways/genetics , Models, Molecular , Molecular Structure , Peptides/chemistry , Peptides/genetics , Protein Conformation , Protein Processing, Post-Translational , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcaceae/enzymology , Staphylococcaceae/genetics
4.
J Bacteriol ; 198(18): 2431-8, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27381911

ABSTRACT

UNLABELLED: Thiopeptides represent one of several families of highly modified peptide antibiotics that hold great promise for natural product engineering. These macrocyclic peptides are produced by a combination of ribosomal synthesis and extensive posttranslational modification by dedicated processing enzymes. We previously identified a compact, plasmid-borne gene cluster for the biosynthesis of micrococcin P1 (MP1), an archetypal thiopeptide antibiotic. In an effort to genetically dissect this pathway, we have reconstituted it in Bacillus subtilis Successful MP1 production required promoter engineering and the reassembly of essential biosynthetic genes in a modular plasmid. The resulting system allows for rapid pathway manipulation, including protein tagging and gene deletion. We find that 8 processing proteins are sufficient for the production of MP1 and that the tailoring enzyme TclS catalyzes a C-terminal reduction step that distinguishes MP1 from its sister compound micrococcin P2. IMPORTANCE: The emergence of antibiotic resistance is one of the most urgent human health concerns of our day. A crucial component in an integrated strategy for countering antibiotic resistance is the ability to engineer pathways for the biosynthesis of natural and derivatized antimicrobial compounds. In this study, the model organism B. subtilis was employed to reconstitute and genetically modularize a 9-gene system for the biosynthesis of micrococcin, the founding member of a growing family of thiopeptide antibiotics.


Subject(s)
Bacillus subtilis/metabolism , Bacteriocins/biosynthesis , Gene Expression Regulation, Bacterial/physiology , Bacillus subtilis/genetics , Bacteriocins/chemistry , Bacteriocins/genetics , Gene Expression Regulation, Enzymologic , Molecular Structure , Multigene Family , Oxidoreductases/genetics , Oxidoreductases/metabolism , Peptides/chemistry , Peptides/genetics
5.
PLoS One ; 10(4): e0122466, 2015.
Article in English | MEDLINE | ID: mdl-25874934

ABSTRACT

Thioredoxins are small soluble proteins that contain a redox-active disulfide (CXXC). These disulfides are tuned to oxidizing or reducing potentials depending on the function of the thioredoxin within the cell. The mechanism by which the potential is tuned has been controversial, with two main hypotheses: first, that redox potential (Em) is specifically governed by a molecular 'rheostat'-the XX amino acids, which influence the Cys pKa values, and thereby, Em; and second, the overall thermodynamics of protein folding stability regulates the potential. Here, we use protein film voltammetry (PFV) to measure the pH dependence of the redox potentials of a series of wild-type and mutant archaeal Trxs, PFV and glutathionine-equilibrium to corroborate the measured potentials, the fluorescence probe BADAN to measure pKa values, guanidinium-based denaturation to measure protein unfolding, and X-ray crystallography to provide a structural basis for our functional analyses. We find that when these archaeal thioredoxins are probed directly using PFV, both the high and low potential thioredoxins display consistent 2H+:2e- coupling over a physiological pH range, in conflict with the conventional 'rheostat' model. Instead, folding measurements reveals an excellent correlation to reduction potentials, supporting the second hypothesis and revealing the molecular mechanism of reduction potential control in the ubiquitous Trx family.


Subject(s)
Oxidation-Reduction , Protein Folding , Thioredoxins/chemistry , Archaea/chemistry , Crystallography, X-Ray , Glutathione/chemistry , Glutathione/genetics , Mutagenesis, Site-Directed , Thermodynamics , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Biochim Biophys Acta ; 1827(8-9): 938-48, 2013.
Article in English | MEDLINE | ID: mdl-23558243

ABSTRACT

While iron is often a limiting nutrient to Biology, when the element is found in the form of heme cofactors (iron protoporphyrin IX), living systems have excelled at modifying and tailoring the chemistry of the metal. In the context of proteins and enzymes, heme cofactors are increasingly found in stoichiometries greater than one, where a single protein macromolecule contains more than one heme unit. When paired or coupled together, these protein associated heme groups perform a wide variety of tasks, such as redox communication, long range electron transfer and storage of reducing/oxidizing equivalents. Here, we review recent advances in the field of multi-heme proteins, focusing on emergent properties of these complex redox proteins, and strategies found in Nature where such proteins appear to be modular and essential components of larger biochemical pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Subject(s)
Hemeproteins/chemistry , Models, Molecular , Oxidation-Reduction
7.
Biochem Soc Trans ; 40(6): 1268-73, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23176466

ABSTRACT

Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the long-range electron transfer across a ~300 Å (1 Å=0.1 nm) wide periplasmic 'gap', MtrA has been shown to be only 105 Å in maximal length. In the present paper, DmsE is further characterized via protein film voltammetry, revealing that the electrochemistry of the DmsE haem cofactors display macroscopic potentials lower than those of MtrA by 100 mV. It is possible this tuning of the redox potential of DmsE is required to shuttle electrons to the outer-membrane proteins specific to DMSO reduction. Other decahaem cytochromes found in S. oneidensis, such as the outer-membrane proteins MtrC, MtrF and OmcA, have been shown to have electrochemical properties similar to those of MtrA, yet possess a different evolutionary relationship.


Subject(s)
Cytochrome c Group/physiology , Periplasm/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/physiology , Cytochrome c Group/chemistry , Cytochrome c Group/metabolism , Dimethyl Sulfoxide/metabolism , Electron Transport , Heme/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/physiology , Models, Molecular , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases/physiology , Sequence Homology, Amino Acid , Shewanella/enzymology
8.
Metallomics ; 3(4): 344-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21327265

ABSTRACT

Examining electron transfer between two proteins with identical spectroscopic signatures is a challenging task. It is supposed that several multiheme cytochromes in Shewanella oneidensis form a molecular "wire" through which electrons are transported across the cellular space and a direct study of this transient protein-protein interaction has not yet been reported. In this study, we present variations on catalytic protein film voltammetry and an anaerobic affinity chromatography assay to demonstrate unidirectional electron transfer between proposed protein pairs. Through use of these techniques, we are able to confirm the transient interactions between these cytochromes, supporting the model of electron transfer that is present in the literature.


Subject(s)
Cytochromes c/metabolism , Shewanella/enzymology , Chromatography, Affinity , Cytochromes c/isolation & purification , Electrochemical Techniques , Electron Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...