Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626773

ABSTRACT

AIMS: Myocardial infarction (MI) is among the main public health problems in the world. This atherosclerotic cardiovascular disease (ASCVD), which seriously endangers human health, progresses to cause heart failure and myocardial fibrosis with a poor prognosis. The gut microbiota plays an important role in health and disease, including obesity and ASCVD. In this study, the protective effect of Lacticaseibacillus rhamnosus GG, known for its anti-inflammatory and antioxidant effects, on isoprenaline (ISO)-induced MI in rats was investigated. METHODS AND RESULTS: Rats were divided into four groups of seven rats in each group as control, ISO, L. rhamnosus, and ISO + L. rhamnosus.The ISO application was made by subcutaneous injection to the rats on the last two days (days 27th and 28th) of the 28-day substance administration. The rats were anesthetized 24 hours after the application of ISO, and blood samples were collected after electrocardiogram (ECG) recordings. To determine myocardial damage and protective effects of L. rhamnosus, serum creatine kinase-MB, cardiac troponin-I, tumor necrosis factor-alpha, interleukin-10, and C-reactive protein (CRP) levels were examined. In addition, ECG recordings were evaluated. While L. rhamnosus had a decreasing effect on cardiac troponin-I, creatine kinase-MB, CRP, and tumor necrosis factor-alpha levels, which increased due to ISO, it had an increasing effect on interleukin-10 levels. Similarly, it decreased the ST-segment elevation caused by ISO while increasing the reduced R wave amplitude.


Subject(s)
Lacticaseibacillus rhamnosus , Myocardial Infarction , Humans , Rats , Animals , Isoproterenol/adverse effects , Interleukin-10 , Lacticaseibacillus , Troponin I/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Myocardial Infarction/chemically induced , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Creatine Kinase/adverse effects
2.
Arq Neuropsiquiatr ; 77(6): 412-417, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31314843

ABSTRACT

Vortioxetine is a multimodal antidepressant agent that modulates 5-HT receptors and inhibits the serotonin transporter. It is indicated especially in cases of major depressive disorder related to cognitive dysfunction. There are many studies investigating the effects of antidepressants on the seizure threshold and short-term epileptic activity. However, the effect of vortioxetine on epileptic seizures is not exactly known. Our aim was to investigate the effects of vortioxetine on penicillin-induced epileptiform activity. Twenty-seven Wistar rats were divided into three groups: sham-control group, positive control group (diazepam), and vortioxetine group. After a penicillin-induced epilepsy model was formed in each of the three groups of animals, 0.1 ml of saline was administered to the control group, 0.1 ml (10 mg/kg) vortioxetine was administered in the vortioxetine group, and 0.1 mL (5 mg/kg) of diazepam was administered in the positive control group, intraperitoneally. The epileptic activity records were obtained for 120 minutes after the onset of seizure. There was no significant difference in spike wave activity between the vortioxetine and diazepam groups, whereas this was significantly reduced in the vortioxetine group compared with the controls. The administration of vortioxetine at a dose of 10 mg/kg immediately after the seizure induction significantly decreased the spike frequencies of epileptiform activity compared with the control group. No significant difference was found between the vortioxetine and positive controls. This study showed that vortioxetine reduces the number of acutely-induced epileptic discharges. Vortioxetine may be an important alternative for epileptic patients with major depressive disorder-related cognitive dysfunction.


Subject(s)
Epilepsy/drug therapy , Serotonin 5-HT1 Receptor Agonists/pharmacology , Vortioxetine/pharmacology , Animals , Electrocorticography , Epilepsy/chemically induced , Epilepsy/physiopathology , Male , Penicillins , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Treatment Outcome
3.
Arq. neuropsiquiatr ; 77(6): 412-417, June 2019. tab, graf
Article in English | LILACS | ID: biblio-1011350

ABSTRACT

ABSTRACT Vortioxetine is a multimodal antidepressant agent that modulates 5-HT receptors and inhibits the serotonin transporter. It is indicated especially in cases of major depressive disorder related to cognitive dysfunction. There are many studies investigating the effects of antidepressants on the seizure threshold and short-term epileptic activity. However, the effect of vortioxetine on epileptic seizures is not exactly known. Our aim was to investigate the effects of vortioxetine on penicillin-induced epileptiform activity. Twenty-seven Wistar rats were divided into three groups: sham-control group, positive control group (diazepam), and vortioxetine group. After a penicillin-induced epilepsy model was formed in each of the three groups of animals, 0.1 ml of saline was administered to the control group, 0.1 ml (10 mg/kg) vortioxetine was administered in the vortioxetine group, and 0.1 mL (5 mg/kg) of diazepam was administered in the positive control group, intraperitoneally. The epileptic activity records were obtained for 120 minutes after the onset of seizure. There was no significant difference in spike wave activity between the vortioxetine and diazepam groups, whereas this was significantly reduced in the vortioxetine group compared with the controls. The administration of vortioxetine at a dose of 10 mg/kg immediately after the seizure induction significantly decreased the spike frequencies of epileptiform activity compared with the control group. No significant difference was found between the vortioxetine and positive controls. This study showed that vortioxetine reduces the number of acutely-induced epileptic discharges. Vortioxetine may be an important alternative for epileptic patients with major depressive disorder-related cognitive dysfunction.


RESUMO A vortioxetina é um agente antidepressivo multimodal que modula os receptores 5HT e inibe o transportador de serotonina. Está indicada, principalmente nos casos de transtorno depressivo maior (TDM), relacionado à disfunção cognitiva. Existem muitos estudos que investigam os efeitos dos antidepressivos no limiar convulsivo e na atividade epiléptica de curto prazo. No entanto, o efeito da vortioxetina nas crises epilépticas não é exatamente conhecido. Nosso objetivo é investigar os efeitos da vortioxetina sobre a atividade epileptiforme induzida pela penicilina. Vinte e sete ratos Wistar foram divididos em três grupos, grupo controle-sham, grupo controle positivo (Diazepam) e grupo vortioxetina. Depois, 0,1 mg (10 mg / kg) de vortioxetina foi administrado no grupo vortioxetina, e 0,1 ml (5 mg / kg) / kg) de diazepam foi administrado no grupo de controle positivo intraperitonealmente. Os registros de atividade epiléptica foram obtidos durante 120 minutos após o início da convulsão. Não houve diferença significativa na atividade de pico entre o grupo de voritoxetina e diazepam, embora tenha sido significativamente reduzida no grupo de vortioxetina em comparação com os controles. A administração de vortioxetina na dose de 10 mg / kg imediatamente após a indução das convulsões diminuiu significativamente as frequências de espícula da atividade epileptiforme em comparação com o grupo controle. Nenhuma diferença significativa foi encontrada entre a vortioxetina e controles positivos. Este estudo mostrou que a vortioxetina reduz o número de descargas epilépticas agudamente induzidas. A vortioxetina pode ser uma alternativa importante para pacientes epilépticos com disfunção cognitiva relacionada à TDM.


Subject(s)
Animals , Male , Epilepsy/drug therapy , Serotonin 5-HT1 Receptor Agonists/pharmacology , Vortioxetine/pharmacology , Penicillins , Time Factors , Random Allocation , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Epilepsy/physiopathology , Epilepsy/chemically induced , Electrocorticography
4.
Neurosciences (Riyadh) ; 21(2): 131-7, 2016 04.
Article in English | MEDLINE | ID: mdl-27094523

ABSTRACT

OBJECTIVE: To investigate the effects of thymoquinone (TQ) in a penicillin-induced epilepsy model in rats. METHODS: This experimental study included 56 adult male Wistar rats. Experiments were performed in the Research Laboratory of the Department of Physiology, Medical School, Duzce University, Duzce, Turkey, between October 2013 and December 2014. Animals were divided into the following 7 groups: sham, control, only thymoquinone, vehicle (Dimethylsulfoxide), and doses of 10, 50, and 100 mg/kg of TQ. After rats were anesthetized, the left part of the skull was removed. A pair of silver/silver chloride electrodes was placed on the somatomotor area, and electrocorticographic recording was started. After 5 minutes basal activity was recorded, and TQ was applied intraperitoneally. At the thirtieth minute after TQ, epileptiform activity was induced by intracortical penicillin. The first spike latency, spike frequency, and the amplitude of epileptiform activity were analyzed statistically. RESULTS: The different doses of TQ significantly increased the latency time to onset of first spike wave, and decreased the frequency, and amplitude of epileptiform activity in the first 20 minutes compared with the control group. CONCLUSION: Thymoquinone shows potential as an antiepileptic drug resulting from its effects of prolonged latency time, and reduced spike wave frequency and amplitude of epileptiform activity.


Subject(s)
Benzoquinones/pharmacology , Epilepsy/chemically induced , Epilepsy/drug therapy , Nigella sativa/chemistry , Penicillins/adverse effects , Seeds/chemistry , Animals , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...