Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(4): 1355-61, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26671730

ABSTRACT

N-Alkyl ammonium resorcinarene salts (NARYs, Y=triflate, picrate, nitrate, trifluoroacetates and NARBr) as tetravalent receptors, are shown to have a strong affinity for chlorides. The high affinity for chlorides was confirmed from a multitude of exchange experiments in solution (NMR and UV/Vis), gas phase (mass spectrometry), and solid-state (X-ray crystallography). A new tetra-iodide resorcinarene salt (NARI) was isolated and fully characterized from exchange experiments in the solid-state. Competition experiments with a known monovalent bis-urea receptor (5) with strong affinity for chloride, reveals these receptors to have a much higher affinity for the first two chlorides, a similar affinity as 5 for the third chloride, and lower affinity for the fourth chloride. The receptors affinity toward chloride follows the trend K1 ≫K2 ≫K3 ≈5>K4, with Ka =5011 m(-1) for 5 in 9:1 CDCl3/[D6]DMSO.

2.
Chemistry ; 21(26): 9556-62, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26014834

ABSTRACT

N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1:10(2) M(-1)) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six-carbon spacer (K2:10(3) M(-2)). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through (1)H NMR titration studies and supplemented by diffusion-ordered spectroscopy (DOSY), X-ray crystallography, and mass spectrometry.

3.
Chemistry ; 20(46): 15144-50, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25257765

ABSTRACT

N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammonium (NH2(+)) cations of the hosts, and also through CH⋅⋅⋅π interactions between the hosts and guests. The self-included and host-guest complexes were studied by single-crystal X-ray diffraction, NMR titration, and mass spectrometry.

4.
Chem Commun (Camb) ; 50(16): 1959-61, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24407751

ABSTRACT

The first examples of halogen bonded analogues of deep cavity cavitands with guest binding properties, formed between N-alkyl ammonium resorcinarene halides as acceptors and bromotrichloromethane as the donor, are reported in the solid state and in solution.

5.
Chemistry ; 19(10): 3374-82, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23344965

ABSTRACT

Subtle differences in metal-ligand bond lengths between a series of [M(4)L(6)](4-) tetrahedral cages, where M = Fe(II), Co(II), or Ni(II), were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single-crystal X-ray diffraction was used to study the solid-state complexes of the iron(II) and nickel(II) cages.

6.
Chemistry ; 18(18): 5552-7, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22488551

ABSTRACT

The non-covalent interactions of different upper-rim-substituted C(2)-resorcinarenes with tetramethylammonium salts were analyzed in the gas phase in an Electrospray Ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometer and by (1)H NMR titrations. The order of binding strengths of the hosts towards the tetramethylammonium cation in the gas phase reflects the electronic nature of the substituents on the upper rim of the resorcinarene. In solution, however, a different trend with particularly high binding constants for halogenated resorcinarenes has been observed. This trend can be explained by a synergetic effect originating from the interaction of the halogenated resorcinarenes with the counter anions through hydrogen bonding. This study highlights the importance of weak interactions in recognition processes and points out the benefits of comparing the gas-phase data with results obtained from solution experiments.


Subject(s)
Calixarenes/chemistry , Ions/chemistry , Phenylalanine/analogs & derivatives , Quaternary Ammonium Compounds/chemistry , Halogenation , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Phenylalanine/chemistry , Salts/chemistry , Spectrometry, Mass, Electrospray Ionization
7.
Chem Commun (Camb) ; 47(9): 2649-51, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21234465

ABSTRACT

Pyrogallarene shows concentration-dependent instability in dilute solutions resulting in elimination of two ketene molecules and formation of pyrogallarene lactones. This unexpected phenomenon, which is not observed with resorcinarenes, highlights the significance of the four hydroxyl groups at 2-position for the molecular characteristics of pyrogallarenes.

8.
Chemistry ; 16(48): 14554-64, 2010 Dec 27.
Article in English | MEDLINE | ID: mdl-21077059

ABSTRACT

A series of symmetrical tri- and tetrameric N-ethyl- and N-phenylurea-functionalized cyclophanes have been prepared in nearly quantitative yields (86-99 %) from the corresponding tri- and tetraamino-functionalized piperazine cyclophanes and ethyl or phenyl isocyanates. Their conformational and complexation properties have been studied by single-crystal X-ray diffraction, variable-temperature NMR spectroscopy, and ESI-MS analysis. The rigid 27-membered trimeric cyclophane skeleton assisted by a seam of intramolecular hydrogen bonds results in a preorganized ditopic recognition site with an all-syn conformation of the urea moieties that, complemented by a lipophilic cavity of the cyclophane, binds molecular and ionic guests as well as ion pairs. The all-syn conformation persists in acidic conditions and the triprotonated triurea cyclophane binds an unprecedented anion pair, H(2)PO(4)(-)⋅⋅⋅HPO(4)(2-), in the solid state. The tetra-N-ethylurea cyclophane is less rigid and demonstrates an induced-fit recognition of diisopropyl ether in the solid state. The guest was encapsulated within the lipophilic interior of a quasicapsule, formed by intramolecular hydrogen-bond-driven folding of the 36-membered cyclophane skeleton. In the gas phase, the essential role of the urea moieties in the binding was demonstrated by the formation of monomeric 1:1 complexes with K(+), TMA(+), and TMP(+) as well as the ion-pair complexes [KI+K](+), [TMABr+TMA](+) and [TMPBr+TMP](+). In the positive-mode ESI-MS analysis, ion-pair binding was found to be more pronounced with the larger tetraurea cyclophanes. In the negative mode, owing to the large size of the binding site, a general binding preference towards larger anions, such as the iodide, over smaller anions, such as the fluoride, was observed.

9.
Org Lett ; 12(7): 1392-5, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20205427

ABSTRACT

The one-pot Mannich condensation of resorcinarenes with piperazine and an excess of formaldehyde under high dilution conditions results in a helical cage, namely, a covalently linked dimer of two resorcinarenes connected via four piperazine bridges in yields ranging from 20 to 40%. The compounds were analyzed by NMR spectroscopy, ESI mass spectrometry, and single crystal X-ray diffraction. The helical cages can encapsulate small guest molecules by adapting the cavity volume by changing the helical pitch according to the guest size.


Subject(s)
Calixarenes/chemical synthesis , Phenylalanine/analogs & derivatives , Piperazines/chemistry , Calixarenes/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Piperazine , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...