Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 14(1): 5073, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604802

ABSTRACT

Responses of the insular cortex (IC) and amygdala to stimuli of positive and negative valence are altered in patients with anxiety disorders. However, neural coding of both anxiety and valence by IC neurons remains unknown. Using fiber photometry recordings in mice, we uncover a selective increase of activity in IC projection neurons of the anterior (aIC), but not posterior (pIC) section, when animals are exploring anxiogenic spaces, and this activity is proportional to the level of anxiety of mice. Neurons in aIC also respond to stimuli of positive and negative valence, and the strength of response to strong negative stimuli is proportional to mice levels of anxiety. Using ex vivo electrophysiology, we characterized the IC connection to the basolateral amygdala (BLA), and employed projection-specific optogenetics to reveal anxiogenic properties of aIC-BLA neurons. Finally, we identified that aIC-BLA neurons are activated in anxiogenic spaces, as well as in response to aversive stimuli, and that both activities are positively correlated. Altogether, we identified a common neurobiological substrate linking negative valence with anxiety-related information and behaviors, which provides a starting point to understand how alterations of these neural populations contribute to psychiatric disorders.


Subject(s)
Anxiety , Insular Cortex , Animals , Mice , Emotions , Anxiety Disorders , Amygdala
2.
Neuroscience ; 169(1): 158-70, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20447448

ABSTRACT

Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories.


Subject(s)
Basal Ganglia/physiopathology , Dyskinesia, Drug-Induced/physiopathology , Ethylamines/pharmacology , Facial Muscles/physiopathology , Indoles/pharmacology , Neural Pathways/drug effects , Pyridines/pharmacology , Receptor, Serotonin, 5-HT2C/physiology , Serotonin Receptor Agonists/pharmacology , Animals , Basal Ganglia/drug effects , Dyskinesia, Drug-Induced/etiology , Electric Stimulation , Ethylamines/toxicity , Gene Expression Regulation/drug effects , Genes, fos , Indoles/toxicity , Male , Mouth , Neural Pathways/physiopathology , Oncogene Proteins v-fos/biosynthesis , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Pyridines/toxicity , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C/drug effects , Serotonin Receptor Agonists/toxicity , Substantia Nigra/drug effects , Substantia Nigra/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...