Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 13(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918207

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disorder of the small intestine and colon. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), and it is a major factor for the development of colon cancer, referred to as colitis-associated cancer (CAC). The current treatment of IBD mainly includes the use of synthetic drugs and monoclonal antibodies. However, these drugs have side effects over long-term use, and the high relapse rate restricts their application. In the recent past, many studies had witnessed a surge in applying plant-derived products to manage various diseases, including IBD. Curcumin is a bioactive component derived from a rhizome of turmeric (Curcuma longa). Numerous in vitro and in vivo studies show that curcumin may interact with many cellular targets (NF-κB, JAKs/STATs, MAPKs, TNF-γ, IL-6, PPARγ, and TRPV1) and effectively reduce the progression of IBD with promising results. Thus, curcumin is a potential therapeutic agent for patients with IBD once it significantly decreases clinical relapse in patients with quiescent IBD. This review aims to summarize recent advances and provide a comprehensive picture of curcumin's effectiveness in IBD and offer our view on future research on curcumin in IBD treatment.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670161

ABSTRACT

In the past few decades, curcumin, a natural polyphenolic phytochemical, has been studied for treating a wide variety of diseases. It has shown promising results as a potential curative agent for a variety of diseases. However, its inherent limitations, such as poor aqueous solubility, poor absorbability, fast metabolic rate, and quick elimination from the body, have limited its application beyond preclinical studies. A huge number of studies have been made to address the issues of curcumin and to maximally utilize its potentials. Many review articles have tried to assess and summarize different nanocarriers, especially organic nanocarriers, for nanoformulations with curcumin. Nevertheless, few exclusive reviews on the progress in nanoformulation of curcumin with inorganic nanomaterials have been made. In this review, we present an exclusive summary of the progress in nanoformulation of curcumin with metal oxide nanoparticles. The beneficial feature of the metal oxide nanoparticles used in the curcumin nanoformulation, the different approaches followed in formulating curcumin with the metal oxides, and the corresponding results, protective effect of curcumin from different metal oxide caused toxicities, and concluding remarks are presented in the review.

3.
ChemSusChem ; 11(19): 3402-3409, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30052324

ABSTRACT

Since concentrated electrolytes have attracted great attention for the stabilization of lithium-metal anodes for lithium-ion batteries, the demonstration of a full cell with an electrolyte concentration study has become a research topic of interest. Herein, we have demonstrated a proof of concept, a lithium-polysulfide full cell battery using various lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte concentrations with glass-fiber-based composite and hard carbon as the cathode and anode, respectively. The initial capacity of the lithium-polysulfide full cell is found to be 970 mA h g-1 at 0.1 C. The capacity is stabilized at 870 mA h g-1 after 100 cycles with a capacity retention of 88.6 %. An excellent capacity retention of ≈80 % is achieved after long 800 cycles at 0.5 C by using full cell technology. Further, our post-mortem analysis sheds light on the difference in SEI layer formation on hard carbon anodes with changing electrolyte concentration, thereby indicating reasons for the obtainment of a high cyclic performance with 1 m LiTFSI salt electrolyte. The successful demonstration of the long cyclic performance of Li-polysulfide full cells is indeed a step towards producing high performance Li-polysulfide full cell batteries with long cycling using conventional LiTFSI salt electrolyte and commercial anode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...