Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38436445

ABSTRACT

We present a fully quantum dynamical treatment of a quantum heat engine and its baths based on the Hierarchy of Pure States (HOPS), an exact and general method for open quantum system dynamics. We show how the change of the bath energy and the interaction energy can be determined within HOPS for arbitrary coupling strength and smooth time dependence of the modulation protocol. The dynamics of all energetic contributions during the operation can be carefully examined both in its initial transient phase and, also later, in its periodic steady state. A quantum Otto engine with a qubit as an inherently nonlinear work medium is studied in a regime where the energy associated with the interaction Hamiltonian plays an important role for the global energy balance and, thus, must not be neglected when calculating its power and efficiency. We confirm that the work required to drive the coupling with the baths sensitively depends on the speed of the modulation protocol. Remarkably, departing from the conventional scheme of well-separated phases by allowing for temporal overlap, we discover that one can even gain energy from the modulation of bath interactions. We visualize these various work contributions using the analog of state change diagrams of thermodynamic cycles. We offer a concise, full presentation of HOPS with its extension to bath observables, as it serves as a universal tool for the numerically exact description of general quantum dynamical (thermodynamic) scenarios far from the weak-coupling limit.

2.
Phys Rev Lett ; 132(6): 060402, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394592

ABSTRACT

Non-Markovian processes may arise in physics due to memory effects of environmental degrees of freedom. For quantum non-Markovianity, it is an ongoing debate to clarify whether such memory effects have a verifiable quantum origin, or whether they might equally be modeled by a classical memory. In this contribution, we propose a criterion to test locally for a truly quantum memory. The approach is agnostic with respect to the environment, as it solely depends on the local dynamics of the system of interest. Experimental realizations are particularly easy, as only single-time measurements on the system itself have to be performed. We study memory in a variety of physically motivated examples, both for a time-discrete case, and for time-continuous dynamics. For the latter, we are able to provide an interesting class of non-Markovian master equations with classical memory that allows for a physically measurable quantum trajectory representation.

3.
Phys Rev E ; 106(2): L022101, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109912

ABSTRACT

In this Letter we investigate the concept of quantum work and its measurability from the viewpoint of quantum measurement theory. Very often, quantum work and fluctuation theorems are discussed in the framework of projective two-point measurement (TPM) schemes. According to a well-known no-go theorem, there is no work observable which satisfies both (i) an average work condition and (ii) the TPM statistics for diagonal input states. Such projective measurements represent a restrictive class among all possible measurements. It is desirable, both from a theoretical and experimental point of view, to extend the scheme to the general case including suitably designed unsharp measurements. This shifts the focus to the question of what information about work and its fluctuations one is able to extract from such generalized measurements. We show that the no-go theorem no longer holds if the observables in a TPM scheme are jointly measurable for any intermediate unitary evolution. We explicitly construct a model with unsharp energy measurements and derive bounds for the visibility that ensure joint measurability. In such an unsharp scenario a single work measurement apparatus can be constructed that allows us to determine the correct average work and to obtain free energy differences with the help of a Jarzynski equality.

4.
Entropy (Basel) ; 24(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35626598

ABSTRACT

We investigate a composite quantum collision model with measurements on the memory part, which effectively probe the system. The framework allows us to adjust the measurement strength, thereby tuning the dynamical map of the system. For a two-qubit setup with a symmetric and informationally complete measurement on the memory, we study the divisibility of the resulting dynamics in dependence of the measurement strength. The measurements give rise to quantum trajectories of the system and we show that the average asymptotic purity depends on the specific form of the measurement. With the help of numerical simulations, we demonstrate that the different performance of the measurements is generic and holds for almost all interaction gates between the system and the memory in the composite collision model. The discrete model is then extended to a time-continuous limit.

5.
Phys Rev Lett ; 123(25): 250606, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922791

ABSTRACT

We address the question of verifying the quantumness of thermal machines. A Szilárd engine is truly quantum if its work output cannot be described by a local hidden state model, i.e., an objective local statistical ensemble. Quantumness in this scenario is revealed by a steering-type inequality which bounds the classically extractable work. A quantum Maxwell demon can violate that inequality by exploiting quantum correlations between the work medium and the thermal environment. While for a classical Szilárd engine an objective description of the medium always exists, any such description can be ruled out by a steering task in a truly quantum case.

SELECTION OF CITATIONS
SEARCH DETAIL
...