Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(26): 8658-8663, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28650040

ABSTRACT

Two new bismuth metal-organic frameworks (Bi-MOFs) were discovered using high throughput experiments employing bismuth(iii) nitrate pentahydrate and triazine-2,4,6-triyl-tribenzoic acid (H3TATB). The reaction was carried out for long reaction times (∼5 d) in a water/DMF-mixture and resulted in the formation of [Bi2(O)(OH)(TATB)]·H2O (denoted as CAU-35). By switching to short reaction times and a methanol/DMF-mixture as the solvent, an analogue of CAU-7-BTB with the composition [Bi(TATB)]·DMF·6H2O (denoted as CAU-7-TATB) was obtained. The use of the amino-functionalised H3TATB linker (H3TATB-NH2) resulted in the formation of a functionalised porous Bi-MOF with the composition [Bi(TATB-NH2)]·5H2O·0.5DMF (CAU-7-TATB-NH2). The structures of CAU-35 and CAU-7-TATB were successfully solved and refined from the PXRD data. CAU-7-TATB-NH2 was post-synthetically modified using anhydrides (acetic anhydride and valeric anhydride), cyclic anhydrides (succinic anhydride and phthalic anhydride), and 1,3-propane sultone. The degree of conversion ranged from 33% to 79%.

2.
Opt Express ; 14(4): 1533-40, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-19503479

ABSTRACT

We have obtained first solid evidence of strong charge separation that is caused by relaxing localized electrons in a polar medium: Space-charge gratings induced in highly-doped LiNbO(3):Fe crystals by interfering nanosecond light pulses at 532 nm show a highly peculiar long term behavior (buildup or/and decay) in the dark. It depends strongly on the applied electric field E(0) (ranging from -140 to +640 kV/cm) and occurs on a time scale of (1 - 100) s which is much larger than the relaxation time of photo-electrons and smaller than the dark dielectric relaxation time. All peculiarities observed are fully described by a charge-transport model that incorporates the energy relaxation of electrons within a band of localized Fe(2+) states and a long-living, field-gradient-independent "polar current" directed along the polar axis.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056603, 2005 May.
Article in English | MEDLINE | ID: mdl-16089664

ABSTRACT

The propagation of high-power femtosecond light pulses in lithium niobate crystals (LiNb O3 ) is investigated experimentally and theoretically in collinear pump-probe transmission experiments. It is found within a wide intensity range that a strong decrease of the pump transmission coefficient at wavelength 388 nm fully complies with the model of two-photon absorption; the corresponding nonlinear absorption coefficient is beta(p) approximately = 3.5 cm/GW. Furthermore, strong pump pulses induce a considerable absorption for the probe at 776 nm. The dependence of the probe transmission coefficient on the time delay Delta t between probe and pump pulses is characterized by a narrow dip (at Delta t approximately = 0) and a long (on the picosecond time scale) lasting plateau. The dip is due to direct two-photon transitions involving pump and probe photons; the corresponding nonlinear absorption coefficient is beta(r) approximately = 0.9 cm/GW. The plateau absorption is caused by the presence of pump-excited charge carriers; the effective absorption cross section at 776 nm is sigma(r) approximately = 8 x 10(-18) cm(2). The above nonlinear absorption parameters are not strongly polarization sensitive. No specific manifestations of the relaxation of hot carriers are found for a pulse duration of approximately = 0.24 ps.

4.
Opt Lett ; 30(11): 1366-8, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15981535

ABSTRACT

Femtosecond pump pulses are strongly attenuated in lithium niobate owing to two-photon absorption; the relevant nonlinear coefficient beta(p) ranges from approximately 3.5 cm/GW for lambda(p) = 388 nm to approximately 0.1 cm/GW for 514 nm. In collinear pump-probe experiments the probe transmission at the double pump wavelength 2lambda(p) = 776 nm is controlled by two different processes: A direct absorption process involving pump and probe photons (beta (r) = 0.9 cm/GW) leads to a pronounced short-duration transmission dip, whereas the probe absorption by pump-excited charge carriers results in a long-duration plateau. Coherent pump-probe interactions are of no importance. Hot-carrier relaxation occurs on the time scale of < or approximately equal to 0.1 ps.

SELECTION OF CITATIONS
SEARCH DETAIL
...