Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 33(11): 3454-3469, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34375428

ABSTRACT

In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.


Subject(s)
Arabidopsis/genetics , DNA Breaks, Single-Stranded , DNA Repair , DNA, Plant/genetics , Genome, Plant , DNA, Plant/chemistry
2.
Nat Plants ; 6(6): 638-645, 2020 06.
Article in English | MEDLINE | ID: mdl-32451449

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has been applied in plant breeding mainly on genes for improving single or multiple traits1-4. Here we show that this technology can also be used to restructure plant chromosomes. Using the Cas9 nuclease from Staphylococcus aureus5, we were able to induce reciprocal translocations in the Mbp range between heterologous chromosomes in Arabidopsis thaliana. Of note, translocation frequency was about five times more efficient in the absence of the classical non-homologous end-joining pathway. Using egg-cell-specific expression of the Cas9 nuclease and consecutive bulk screening, we were able to isolate heritable events and establish lines homozygous for the translocation, reaching frequencies up to 2.5% for individual lines. Using molecular and cytological analysis, we confirmed that the chromosome-arm exchanges we obtained between chromosomes 1 and 2 and between chromosomes 1 and 5 of Arabidopsis were conservative and reciprocal. The induction of chromosomal translocations enables mimicking of genome evolution or modification of chromosomes in a directed manner, fixing or breaking genetic linkages between traits on different chromosomes. Controlled restructuring of plant genomes has the potential to transform plant breeding.


Subject(s)
Arabidopsis/genetics , CRISPR-Cas Systems , Chromosomes, Plant , Translocation, Genetic , Arabidopsis/enzymology , Endonucleases/analysis , Plant Proteins/analysis
3.
Plant Cell ; 31(4): 775-790, 2019 04.
Article in English | MEDLINE | ID: mdl-30760561

ABSTRACT

DNA-protein crosslinks (DPCs) represent a severe threat to the genome integrity; however, the main mechanisms of DPC repair were only recently elucidated in humans and yeast. Here we define the pathways for DPC repair in plants. Using CRISPR/Cas9, we could show that only one of two homologs of the universal repair proteases SPARTAN/ weak suppressor of smt3 (Wss1), WSS1A, is essential for DPC repair in Arabidopsis (Arabidopsis thaliana). WSS1A defective lines exhibit developmental defects and are hypersensitive to camptothecin (CPT) and cis-platin. Interestingly, the CRISPR/Cas9 mutants of TYROSYL-DNA PHOSPHODIESTERASE 1 (TDP1) are insensitive to CPT, and only the wss1A tdp1 double mutant reveals a higher sensitivity than the wss1A single mutant. This indicates that TDP1 defines a minor backup pathway in the repair of DPCs. Moreover, we found that knock out of the endonuclease METHYL METHANESULFONATE AND UV SENSITIVE PROTEIN 81 (MUS81) results in a strong sensitivity to DPC-inducing agents. The fact that wss1A mus81 and tdp1 mus81 double mutants exhibit growth defects and an increase in dead cells in root meristems after CPT treatment demonstrates that there are three independent pathways for DPC repair in Arabidopsis. These pathways are defined by their different biochemical specificities, as main actors, the DNA endonuclease MUS81 and the protease WSS1A, and the phosphodiesterase TDP1 as backup.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...