Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
PLoS One ; 16(7): e0254315, 2021.
Article in English | MEDLINE | ID: mdl-34242345

ABSTRACT

Aggressiveness of cancers, like prostate cancer, has been found to be associated with elevated expression of the microsomal prostaglandin E synthase-1 (mPGES-1). Here, we investigated whether KH176m (the active metabolite of sonlicromanol), a recently discovered selective mPGES-1 inhibitor, could affect prostate cancer cells-derived spheroid growth. We demonstrated that KH176m suppressed mPGES-1 expression and growth of DU145 (high mPGES-1 expression)-derived spheroids, while it had no effect on the LNCaP cell line, which has low mPGES-1 expression. By addition of exogenous PGE2, we found that the effect of KH176m on mPGES-1 expression and spheroid growth is due to the inhibition of a PGE2-driven positive feedback control-loop of mPGES-1 transcriptional regulation. Cancer stem cells (CSCs) are a subset of cancer cells exhibiting the ability of self-renewal, plasticity, and initiating and maintaining tumor growth. Our data shows that mPGES-1 is specifically expressed in this CSCs subpopulation (CD44+CD24-). KH176m inhibited the expression of mPGES-1 and reduced the growth of spheroids derived from the CSC. Based on the results obtained we propose selective mPGES-1 targeting by the sonlicromanol metabolite KH176m as a potential novel treatment approach for cancer patients with high mPGES-1 expression.


Subject(s)
Dinoprostone , Prostaglandin-E Synthases , Prostatic Neoplasms , Cell Line, Tumor , Humans , Intramolecular Oxidoreductases , Male , Microsomes
2.
Stem Cell Reports ; 16(9): 2197-2212, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34329596

ABSTRACT

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/genetics , Chromans/pharmacology , Heteroplasmy/genetics , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , RNA, Transfer, Leu/genetics , Transcriptome , Animals , Astrocytes/metabolism , Cell Culture Techniques , Cells, Cultured , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/cytology , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/etiology , Mitochondrial Encephalomyopathies/metabolism , Neurons/cytology , Phenotype , Rats
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166062, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33385517

ABSTRACT

The majority of cellular energy is produced by the mitochondrial oxidative phosphorylation (OXPHOS) system. Failure of the first OXPHOS enzyme complex, NADH:ubiquinone oxidoreductase or complex I (CI), is associated with multiple signs and symptoms presenting at variable ages of onset. There is no approved drug treatment yet to slow or reverse the progression of CI-deficient disorders. Here, we present a comprehensive human metabolic network model of genetically characterized CI-deficient patient-derived fibroblasts. Model calculations predicted that increased cholesterol production, export, and utilization can counterbalance the surplus of reducing equivalents in patient-derived fibroblasts, as these pathways consume considerable amounts of NAD(P)H. We show that fibrates attenuated increased NAD(P)H levels and improved CI-deficient fibroblast growth by stimulating the production of cholesterol via enhancement of its cellular efflux. In CI-deficient (Ndufs4-/-) mice, fibrate treatment resulted in prolonged survival and improved motor function, which was accompanied by an increased cholesterol efflux from peritoneal macrophages. Our results shine a new light on the use of compensatory biological pathways in mitochondrial dysfunction, which may lead to novel therapeutic interventions for mitochondrial diseases for which currently no cure exists.


Subject(s)
Biosynthetic Pathways/drug effects , Cholesterol/metabolism , Electron Transport Complex I/deficiency , Fibric Acids/therapeutic use , Mitochondrial Diseases/metabolism , Animals , Cholesterol/genetics , Electron Transport Complex I/drug effects , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Motor Activity/drug effects , NADP/metabolism , Oxidation-Reduction/drug effects
4.
Sci Rep ; 10(1): 15485, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968089

ABSTRACT

Mutations in PRKN are the most common cause of early onset Parkinson's disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in PRKN mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from PRKN mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Fibroblasts from 4 controls and 4 PRKN mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Direct conversion of control and PRKN mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.


Subject(s)
Dopaminergic Neurons/metabolism , Mitophagy , Oxidation-Reduction , Ubiquitin-Protein Ligases/genetics , Adult , Cell Death , Chromans/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Optical Imaging , Oxidation-Reduction/drug effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/physiology
5.
Cell Death Dis ; 11(4): 263, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327637

ABSTRACT

Metabolic flexibility is an essential characteristic of eukaryotic cells in order to adapt to physiological and environmental changes. Especially in mammalian cells, the metabolic switch from mitochondrial respiration to aerobic glycolysis provides flexibility to sustain cellular energy in pathophysiological conditions. For example, attenuation of mitochondrial respiration and/or metabolic shifts to glycolysis result in a metabolic rewiring that provide beneficial effects in neurodegenerative processes. Ferroptosis, a non-apoptotic form of cell death triggered by an impaired redox balance is gaining attention in the field of neurodegeneration. We showed recently that activation of small-conductance calcium-activated K+ (SK) channels modulated mitochondrial respiration and protected neuronal cells from oxidative death. Here, we investigated whether SK channel activation with CyPPA induces a glycolytic shift thereby increasing resilience of neuronal cells against ferroptosis, induced by erastin in vitro and in the nematode C. elegans exposed to mitochondrial poisons in vivo. High-resolution respirometry and extracellular flux analysis revealed that CyPPA, a positive modulator of SK channels, slightly reduced mitochondrial complex I activity, while increasing glycolysis and lactate production. Concomitantly, CyPPA rescued the neuronal cells from ferroptosis, while scavenging mitochondrial ROS and inhibiting glycolysis reduced its protection. Furthermore, SK channel activation increased survival of C. elegans challenged with mitochondrial toxins. Our findings shed light on metabolic mechanisms promoted through SK channel activation through mitohormesis, which enhances neuronal resilience against ferroptosis in vitro and promotes longevity in vivo.


Subject(s)
Ferroptosis/physiology , Glycolysis/physiology , Animals , Caenorhabditis elegans , Cell Death , Signal Transduction
6.
JIMD Rep ; 46(1): 52-62, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31240155

ABSTRACT

Migraine, characterized by recurrent attacks of predominantly unilateral throbbing headache, affects approximately 15% of the adult population and is an important cause of disability worldwide. Knowledge required for the development of new classes of antimigraine drugs might come from studying rare metabolic diseases associated with migraine. An illustrative example of a monogenetic disorder associated with migraine is the spectrum of disorders caused by the m.3243A>G mutation in the mitochondrial transfer RNA Leucine. Reported migraine prevalence figures in patients with this particular mutation vary considerably, but compared to the general population, m.3243A>G patients have a higher migraine prevalence. This burdensome symptom might sometimes even be the only clinical feature in maternal relatives carrying the m.3243A>G mutation. Although the exact sequence of events and the relative importance of factors underlying migraine in m.3243A>G MELAS spectrum disorders are still enigmatic, substantial evidence in man exist that dysfunctional mitochondria in both the vascular, the smooth muscle cells and the neuronal system and the interaction between these are at the starting point of the migraine developing pathophysiological cascade. Exclusively based on results of studies performed in patients harboring the m.3243A>G mutation, either in vivo or ex vivo, we here summarize our current understanding of mitochondrial angiopathy associated migraine in m.3243A>G patients which knowledge might lead to potential new avenues for migraine drug development.

7.
Front Genet ; 10: 245, 2019.
Article in English | MEDLINE | ID: mdl-30972103

ABSTRACT

Mitochondrial diseases are a group of rare life-threatening diseases often caused by defects in the oxidative phosphorylation system. No effective treatment is available for these disorders. Therapeutic development is hampered by the high heterogeneity in genetic, biochemical, and clinical spectra of mitochondrial diseases and by limited preclinical resources to screen and identify effective treatment candidates. Alternative models of the pathology are essential to better understand mitochondrial diseases and to accelerate the development of new therapeutics. The fruit fly Drosophila melanogaster is a cost- and time-efficient model that can recapitulate a wide range of phenotypes observed in patients suffering from mitochondrial disorders. We targeted three important subunits of complex I of the mitochondrial oxidative phosphorylation system with the flexible UAS-Gal4 system and RNA interference (RNAi): NDUFS4 (ND-18), NDUFS7 (ND-20), and NDUFV1 (ND-51). Using two ubiquitous driver lines at two temperatures, we established a collection of phenotypes relevant to complex I deficiencies. Our data offer models and phenotypes with different levels of severity that can be used for future therapeutic screenings. These include qualitative phenotypes that are amenable to high-throughput drug screening and quantitative phenotypes that require more resources but are likely to have increased potential and sensitivity to show modulation by drug treatment.

8.
Front Genet ; 10: 131, 2019.
Article in English | MEDLINE | ID: mdl-30881379

ABSTRACT

Mitochondria are best known as the powerhouses of the cells but their cellular role goes far beyond energy production; among others, they have a pivotal function in cellular calcium and redox homeostasis. Mitochondrial dysfunction is often associated with severe and relatively rare disorders with an unmet therapeutic need. Given their central integrating role in multiple cellular pathways, mitochondrial dysfunction is also relevant in the pathogenesis of various other, more common, human pathologies. Here we discuss how live-cell high content microscopy can be used for image-based phenotypic profiling to assess mitochondrial (dys) function. From this perspective, we discuss a selection of live-cell fluorescent reporters and imaging strategies and discuss the pros/cons of human cell models in mitochondrial research. We also present an overview of live-cell high content microscopy applications used to detect disease-associated cellular phenotypes and perform cell-based drug screening.

9.
Clin Pharmacol Ther ; 105(1): 101-111, 2019 01.
Article in English | MEDLINE | ID: mdl-30058726

ABSTRACT

KH176 is a potent intracellular reduction-oxidation-modulating compound developed to treat mitochondrial disease. We studied tolerability, safety, pharmacokinetics, pharmacodynamics, and efficacy of twice daily oral 100 mg KH176 for 28 days in a double-blind, randomized, placebo-controlled, two-way crossover phase IIA study in 18 adult m.3243A>G patients without cardiovascular involvement. Efficacy parameters included clinical and functional outcome measures and biomarkers. The trial was registered within ClinicalTrials.gov (NCT02909400), the European Clinical Trials Database (2016-001696-79), and ISRCTN (43372293) (The KHENERGY study). Twice daily oral 100 mg KH176 was well tolerated and appeared safe. No serious treatment-emergent adverse events were reported. No significant improvements in gait parameters or other outcome measures were obtained, except for a positive effect on alertness and mood, although a coincidence due to multiplicity cannot be ignored. The results of the study provide first data on safety and efficacy of KH176 in patients with mitochondrial disease and will be instrumental in designing future clinical trials.


Subject(s)
Antioxidants/administration & dosage , Chromans/administration & dosage , DNA, Mitochondrial/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mutation/genetics , Administration, Oral , Adult , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnosis , Treatment Outcome
10.
Cell Death Dis ; 9(11): 1135, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429455

ABSTRACT

Cell models of mitochondrial complex I (CI) deficiency display activation of glycolysis to compensate for the loss in mitochondrial ATP production. This adaptation can mask other relevant deficiency-induced aberrations in cell physiology. Here we investigated the viability, mitochondrial morphofunction, ROS levels and ATP homeostasis of primary skin fibroblasts from Leigh Syndrome (LS) patients with isolated CI deficiency. These cell lines harbored mutations in nuclear DNA (nDNA)-encoded CI genes (NDUFS7, NDUFS8, NDUFV1) and, to prevent glycolysis upregulation, were cultured in a pyruvate-free medium in which glucose was replaced by galactose. Following optimization of the cell culture protocol, LS fibroblasts died in the galactose medium, whereas control cells did not. LS cell death was dose-dependently inhibited by pyruvate, malate, oxaloacetate, α-ketoglutarate, aspartate, and exogenous NAD+ (eNAD), but not by lactate, succinate, α-ketobutyrate, and uridine. Pyruvate and eNAD increased the cellular NAD+ content in galactose-treated LS cells to a different extent and co-incubation studies revealed that pyruvate-induced rescue was not primarily mediated by NAD+. Functionally, in LS cells glucose-by-galactose replacement increased mitochondrial fragmentation and mass, depolarized the mitochondrial membrane potential (Δψ), increased H2DCFDA-oxidizing ROS levels, increased mitochondrial ATP generation, and reduced the total cellular ATP content. These aberrations were differentially rescued by pyruvate and eNAD, supporting the conclusion that these compounds rescue galactose-induced LS cell death via different mechanisms. These findings establish a cell-based strategy for intervention testing and enhance our understanding of CI deficiency pathophysiology.


Subject(s)
Electron Transport Complex I/deficiency , Fibroblasts/drug effects , Galactose/antagonists & inhibitors , Leigh Disease/metabolism , Mitochondrial Diseases/genetics , NAD/pharmacology , Pyruvic Acid/pharmacology , Adenosine Triphosphate/biosynthesis , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Cell Death/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Electron Transport Complex I/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Galactose/metabolism , Galactose/pharmacology , Gene Expression , Glycolysis/drug effects , Humans , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Leigh Disease/genetics , Leigh Disease/pathology , Malates/metabolism , Malates/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mutation , NAD/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/pharmacology , Primary Cell Culture , Pyruvic Acid/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology
11.
Sci Rep ; 8(1): 6577, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700325

ABSTRACT

A deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases. Here we report on the development of a new clinical-stage drug KH176 acting as a ROS-Redox modulator. Patient-derived primary skin fibroblasts were used to assess the potency of a new library of chromanyl-based compounds to reduce ROS levels and protect cells against redox-stress. The lead compound KH176 was studied in cell-based and enzymatic assays and in silico. Additionally, the metabolism, pharmacokinetics and toxicokinetics of KH176 were assessed in vivo in different animal species. We demonstrate that KH176 can effectively reduce increased cellular ROS levels and protect OXPHOS deficient primary cells against redox perturbation by targeting the Thioredoxin/Peroxiredoxin system. Due to its dual activity as antioxidant and redox modulator, KH176 offers a novel approach to the treatment of mitochondrial (-related) diseases. KH176 efficacy and safety are currently being evaluated in a Phase 2 clinical trial.


Subject(s)
Chromans/pharmacology , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Peroxiredoxins/metabolism , Thioredoxins/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Cell Line , Chromans/chemistry , Dose-Response Relationship, Drug , Electron Transport Complex I/deficiency , Glutathione/metabolism , Humans , Mitochondria/drug effects , Mitochondrial Diseases/etiology , Models, Molecular , Molecular Conformation , Molecular Structure , Oxidative Phosphorylation , Peroxiredoxins/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
12.
Dis Model Mech ; 11(3)2018 03 27.
Article in English | MEDLINE | ID: mdl-29590638

ABSTRACT

Mitochondrial diseases are associated with a wide variety of clinical symptoms and variable degrees of severity. Patients with such diseases generally have a poor prognosis and often an early fatal disease outcome. With an incidence of 1 in 5000 live births and no curative treatments available, relevant animal models to evaluate new therapeutic regimes for mitochondrial diseases are urgently needed. By knocking down ND-18, the unique Drosophila ortholog of NDUFS4, an accessory subunit of the NADH:ubiquinone oxidoreductase (Complex I), we developed and characterized several dNDUFS4 models that recapitulate key features of mitochondrial disease. Like in humans, the dNDUFS4 KD flies display severe feeding difficulties, an aspect of mitochondrial disorders that has so far been largely ignored in animal models. The impact of this finding, and an approach to overcome it, will be discussed in the context of interpreting disease model characterization and intervention studies.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Feeding Behavior , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Animals , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Fat Body/metabolism , Gene Knockdown Techniques , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Diseases/physiopathology , Motor Activity , Muscles/metabolism , Neurons/metabolism , Organ Specificity , Reproducibility of Results
13.
Orphanet J Rare Dis ; 12(1): 163, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29037240

ABSTRACT

BACKGROUND: Mitochondrial disorders are a clinically, biochemically and genetically heterogeneous group of multi-system diseases, with an unmet medical need for treatment. KH176 is an orally bio-available small molecule under development for the treatment of mitochondrial(-related) diseases. The compound is a member of a new class of drugs, acting as a potent intracellular redox-modulating agent essential for the control of oxidative and redox pathologies. The aim of this randomized, placebo controlled, double-blinded phase 1 study was to test safety, tolerability and pharmacokinetics of single and multiple doses of KH176 in healthy male volunteers. Putative effects on redox related biomarkers were explored. RESULTS: KH176 was well tolerated up to and including a single dose of 800 mg and multiple doses of 400 mg b.i.d. for 7 Days. However, when the QT interval was corrected for heart rate, administration of single doses of 800 and 2000 mg and at a multiple dose of 400 mg KH176 had marked effects. Post-hoc analysis of the ECGs showed clear changes in cardiac electrophysiology at single doses of 800 and 2000 mg and multiple doses of 400 mg b.i.d.. At lower doses, detailed ECG analysis showed no changes in electrophysiology compared to placebo. Exposure-response modelling of the cardiac intervals revealed an exposure range of KH176 without effects on cardiac conduction and provided a threshold of 1000 ng/mL above which changes in intervals could occur. After single- and multiple-dose administration, the pharmacokinetics of KH176 was more than dose proportional. KH176 accumulated to a small extent and food only slightly affected the pharmacokinetics of KH176, which was considered clinically irrelevant. Renal excretion of unchanged KH176 and its metabolite represents a minor pathway in the elimination of KH176. As expected in healthy volunteers no effects on redox biomarkers were observed. CONCLUSION: The study deemed that KH176 is well tolerated up to single doses of 800 mg and multiple doses of 400 mg b.i.d. and has a pharmacokinetic profile supportive for a twice daily dosing. Only at high doses, KH176 causes clinically relevant changes in cardiac electrophysiology, including prolonged QTc interval and changes in T wave morphology. A Phase 2 clinical trial (100 mg b.i.d., orally) has been conducted recently of which the final results are expected Q1 2018. TRIAL REGISTRATION: NCT02544217 . Registered. ISRCTN43372293 . Retrospectively registered.


Subject(s)
Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Rare Diseases/drug therapy , Rare Diseases/genetics , Adolescent , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Male , Middle Aged , Young Adult
14.
Sci Rep ; 7(1): 11733, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916769

ABSTRACT

Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 -/- mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 -/- mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 -/- mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 -/- mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing.


Subject(s)
Brain/diagnostic imaging , Chromans/therapeutic use , Electron Transport Complex I/genetics , Leigh Disease/drug therapy , Animals , Brain/ultrastructure , Chromans/chemistry , Diffusion Tensor Imaging/methods , Gait/drug effects , Mice , Mice, Knockout , Mitochondrial Diseases/drug therapy , Neuroimaging , Reactive Oxygen Species/metabolism
15.
Cell Death Dis ; 8(2): e2601, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28182009

ABSTRACT

TNF receptor superfamily members (TNFRSF) such as CD40, Fas and TRAIL receptor 2 (TRAILR2) participate to the adaptive immune response by eliciting survival, proliferation, differentiation and/or cell death signals. The balance between these signals determines the fate of the immune response. It was previously reported that these receptors are able to self-assemble in the absence of ligand through their extracellular regions. However, the role of this oligomerization is not well understood, and none of the proposed hypotheses take into account potential hetero-association of receptors. Using CD40 as bait in a flow cytometry Förster resonance energy transfer assay, TNFRSF members with known functions in B cells were probed for interactions. Both Fas and TRAILR2 associated with CD40. Immunoprecipitation experiments confirmed the interaction of CD40 with Fas at the endogenous levels in a BJAB B-cell lymphoma cell line deficient for TRAILR2. TRAILR2-expressing BJAB cells displayed a robust CD40-TRAILR2 interaction at the expense of the CD40-Fas interaction. The same results were obtained by proximity ligation assay, using TRAILR2-positive and -negative BJAB cells and primary human B cells. Expression of the extracellular domains of Fas or TRAILR2 with a glycolipid membrane anchor specifically reduced the intrinsic signalling pathway of CD40 in 293T cells. Conversely, BJAB cells lacking endogenous Fas or TRAILR2 showed an increased NF-κB response to CD40L. Finally, upregulation of TRAILR2 in primary human B cells correlated with reduced NF-κB activation and reduced proliferation in response to CD40L. Altogether, these data reveal that selective interactions between different TNFRSF members may modulate ligand-induced responses upstream signalling events.


Subject(s)
CD40 Antigens/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Tumor Necrosis Factor/metabolism , fas Receptor/metabolism , B-Lymphocytes/metabolism , CD40 Ligand/metabolism , Cell Line , Gene Expression Regulation/physiology , HEK293 Cells , Humans , NF-kappa B/metabolism , Polymerization , Protein Interaction Domains and Motifs/physiology , Signal Transduction/physiology , Tumor Cells, Cultured , Up-Regulation/physiology
16.
Nat Protoc ; 11(9): 1693-710, 2016 09.
Article in English | MEDLINE | ID: mdl-27560174

ABSTRACT

Mitochondria have a central role in cellular (patho)physiology, and they display a highly variable morphology that is probably coupled to their functional state. Here we present a protocol that allows unbiased and automated quantification of mitochondrial 'morphofunction' (i.e., morphology and membrane potential), cellular parameters (size, confluence) and nuclear parameters (number, morphology) in intact living primary human skin fibroblasts (PHSFs). Cells are cultured in 96-well plates and stained with tetramethyl rhodamine methyl ester (TMRM), calcein-AM (acetoxy-methyl ester) and Hoechst 33258. Next, multispectral fluorescence images are acquired using automated microscopy and processed to extract 44 descriptors. Subsequently, the descriptor data are subjected to a quality control (QC) algorithm based upon principal component analysis (PCA) and interpreted using univariate, bivariate and multivariate analysis. The protocol requires a time investment of ∼4 h distributed over 2 d. Although it is specifically developed for PHSFs, which are widely used in preclinical research, the protocol is portable to other cell types and can be scaled up for implementation in high-content screening.


Subject(s)
Microscopy/methods , Mitochondria/metabolism , Cell Line , Cell Survival , Fibroblasts/cytology , Humans , Image Processing, Computer-Assisted , Skin/cytology
17.
Oncotarget ; 7(40): 64942-64956, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27409341

ABSTRACT

DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL (TNF related apoptosis-inducing ligand). Therapies based on soluble recombinant TRAIL or agonist antibodies directed against one of the receptors are currently under clinical trials. However, TRAIL-R positive tumor cells are frequently resistant to TRAIL induced apoptosis. The precise mechanisms of this resistance are still not entirely understood. We have previously reported on synthetic peptides that bind to DR5 (TRAILmim/DR5) and induce tumor cell apoptosis in vitro and in vivo. Here, we showed that while hexameric soluble TRAIL is able to efficiently kill the DR5 positive lymphoma Jurkat or the carcinoma HCT116, these cells are resistant to apoptosis induced by the divalent form of TRAILmim/DR5 and are poorly sensitive to apoptosis induced by an anti-DR5 agonist monoclonal antibody. This resistance can be restored by the cross-linking of anti-DR5 agonist antibody but not by the cross-linking of the divalent form of TRAILmim/DR5. Interestingly, the divalent form of TRAILmim/DR5 that induced apoptosis of DR5 positive BJAB cells, acts as an inhibitor of TRAIL-induced apoptosis on Jurkat and HCT116 cells. The rapid internalization of DR5 observed when treated with divalent form of TRAILmim/DR5 could explain the antagonist activity of the ligand on Jurkat and HCT116 cells but also highlights the independence of the mechanisms responsible for internalization and activation when triggering the DR5 apoptotic cascade.


Subject(s)
Immunotherapy/methods , Neoplasms/metabolism , Protein Multimerization , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Apoptosis , HCT116 Cells , Humans , Jurkat Cells , Ligands , Molecular Targeted Therapy , Neoplasms/therapy , Organ Specificity , Receptor Aggregation , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , TNF-Related Apoptosis-Inducing Ligand/chemical synthesis , TNF-Related Apoptosis-Inducing Ligand/therapeutic use
18.
EMBO Mol Med ; 8(4): 311-27, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26951622

ABSTRACT

This review presents our current understanding of the pathophysiology and potential treatment strategies with respect to mitochondrial disease in children. We focus on pathologies due to mutations in nuclear DNA-encoded structural and assembly factors of the mitochondrial oxidative phosphorylation (OXPHOS) system, with a particular emphasis on isolated mitochondrial complex I deficiency. Following a brief introduction into mitochondrial disease and OXPHOS function, an overview is provided of the diagnostic process in children with mitochondrial disorders. This includes the impact of whole-exome sequencing and relevance of cellular complementation studies. Next, we briefly present how OXPHOS mutations can affect cellular parameters, primarily based on studies in patient-derived fibroblasts, and how this information can be used for the rational design of small-molecule treatment strategies. Finally, we discuss clinical trial design and provide an overview of small molecules that are currently being developed for treatment of mitochondrial disease.


Subject(s)
Drug Discovery/trends , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/physiopathology , Child , Child, Preschool , Clinical Trials as Topic , Electron Transport Complex I/deficiency , Humans , Mitochondrial Diseases/diagnosis
19.
Cell Metab ; 22(3): 399-407, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26331605

ABSTRACT

Cholesterol-lowering statins effectively reduce the risk of major cardiovascular events. Myopathy is the most important adverse effect, but its underlying mechanism remains enigmatic. In C2C12 myoblasts, several statin lactones reduced respiratory capacity and appeared to be strong inhibitors of mitochondrial complex III (CIII) activity, up to 84% inhibition. The lactones were in general three times more potent inducers of cytotoxicity than their corresponding acid forms. The Qo binding site of CIII was identified as off-target of the statin lactones. These findings could be confirmed in muscle tissue of patients suffering from statin-induced myopathies, in which CIII enzyme activity was reduced by 18%. Respiratory inhibition in C2C12 myoblasts could be attenuated by convergent electron flow into CIII, restoring respiration up to 89% of control. In conclusion, CIII inhibition was identified as a potential off-target mechanism associated with statin-induced myopathies.


Subject(s)
Electron Transport Complex III/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Lactones/adverse effects , Mitochondria/drug effects , Muscular Diseases/chemically induced , Myoblasts/drug effects , Myoblasts/pathology , Adenosine Triphosphate/metabolism , Animals , Cell Line , Cell Respiration/drug effects , Cells, Cultured , Electron Transport Complex III/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Lactones/chemistry , Mice , Mitochondria/metabolism , Mitochondria/pathology , Models, Molecular , Muscles/cytology , Muscles/drug effects , Muscles/metabolism , Muscles/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Myoblasts/metabolism
20.
Int J Biochem Cell Biol ; 63: 60-5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25666557

ABSTRACT

While often presented as a single entity, mitochondrial diseases comprise a wide range of clinical, biochemical and genetic heterogeneous disorders. Among them, defects in the process of oxidative phosphorylation are the most prevalent. Despite intense research efforts, patients are still without effective treatment. An important part of the development of new therapeutics relies on predictive models of the pathology in order to assess their therapeutic potential. Since mitochondrial diseases are a heterogeneous group of progressive multisystemic disorders that can affect any organ at any time, the development of various in vivo models for the different diseases-associated genes defects will accelerate the search for effective therapeutics. Here, we review existing Drosophila melanogaster models for mitochondrial diseases, with a focus on alterations in oxidative phosphorylation, and discuss the potential of this powerful model organism in the process of drug target discovery. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.


Subject(s)
DNA, Mitochondrial/genetics , Drosophila melanogaster/genetics , Mitochondria/genetics , Mitochondrial Diseases/metabolism , Animals , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Disease Models, Animal , Drug Discovery , Energy Metabolism/genetics , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...