Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 46(4): 461-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22052879

ABSTRACT

Both hyperoxia and mechanical ventilation can independently cause lung injury. In combination, these insults produce accelerated and severe lung injury. We recently reported that pre-exposure to hyperoxia for 12 hours, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone. We also reported that such injury and apoptosis are inhibited by antioxidant treatment. In this study, we hypothesized that apoptosis signal-regulating kinase-1 (ASK-1), a redox-sensitive, mitogen-activated protein kinase kinase kinase, plays a role in lung injury and apoptosis in this model. To determine the role of ASK-1 in lung injury, the release of inflammatory mediators and apoptosis, attributable to 12 hours of hyperoxia, were followed by large tidal volume mechanical ventilation with hyperoxia. Wild-type and ASK-1 knockout mice were subjected to hyperoxia (Fi(O(2)) = 0.9) for 12 hours before 4 hours of large tidal mechanical ventilation (tidal volume = 25 µl/g) with hyperoxia, and were compared with nonventilated control mice. Lung injury, apoptosis, and cytokine release were measured. The deletion of ASK-1 significantly inhibited lung injury and apoptosis, but did not affect the release of inflammatory mediators, compared with the wild-type mice. ASK-1 is an important regulator of lung injury and apoptosis in this model. Further study is needed to determine the mechanism of lung injury and apoptosis by ASK-1 and its downstream mediators in the lung.


Subject(s)
MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , Ventilator-Induced Lung Injury/enzymology , Ventilator-Induced Lung Injury/prevention & control , Animals , Apoptosis/genetics , Cytokines/metabolism , Disease Models, Animal , Enzyme Activation , Epithelial Cells/pathology , Female , Hyperoxia/enzymology , Inflammation Mediators/metabolism , Male , Mice , Mice, Knockout , Pulmonary Alveoli/pathology , Ventilator-Induced Lung Injury/pathology
2.
J Appl Physiol (1985) ; 111(5): 1467-76, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21799126

ABSTRACT

Both prolonged exposure to hyperoxia and large tidal volume mechanical ventilation can each independently cause lung injury. However, the combined impact of these insults is poorly understood. We recently reported that preexposure to hyperoxia for 12 h, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone (Makena et al. Am J Physiol Lung Cell Mol Physiol 299: L711-L719, 2010). The upstream mechanisms of this lung injury and apoptosis have not been clearly elucidated. We hypothesized that lung injury in this model was dependent on oxidative signaling via the c-Jun NH(2)-terminal kinases (JNK). We, therefore, evaluated lung injury and apoptosis in the presence of N-acetyl-cysteine (NAC) in both mouse and cell culture models, and we provide evidence that NAC significantly inhibited lung injury and apoptosis by reducing the production of ROS, activation of JNK, and apoptosis. To confirm JNK involvement in apoptosis, cells treated with a specific JNK inhibitor, SP600125, and subjected to preexposure to hyperoxia, followed by mechanical stretch, exhibited significantly reduced evidence of apoptosis. In conclusion, lung injury and apoptosis caused by preexposure to hyperoxia, followed by high tidal volume mechanical ventilation, induces ROS-mediated activation of JNK and mitochondrial-mediated apoptosis. NAC protects lung injury and apoptosis by inhibiting ROS-mediated activation of JNK and downstream proapoptotic signaling.


Subject(s)
Hyperoxia/enzymology , JNK Mitogen-Activated Protein Kinases/metabolism , Lung Injury/metabolism , Oxidants/metabolism , Acetylcysteine/pharmacology , Animals , Anthracenes/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Caspase Inhibitors , Cell Line , Cytochromes c/antagonists & inhibitors , Cytochromes c/metabolism , Epithelial Cells/metabolism , Hyperoxia/etiology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...