Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 61: 102768, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945506

ABSTRACT

Nanophotothermolysis (NPhT) effect is considered to be an approach for the development of highly selective modalities for anticancer treatment. Herein, we evaluated an antitumor efficacy of NPhT with intravenously injected zinc phthalocyanine particles (ZnPcPs) in murine subcutaneous syngeneic tumor models. In S37 sarcoma-bearing mice a biodistribution of ZnPcPs was studied and the high antitumor efficacy of ZnPcPs-mediated NPhT was shown, including a response of metastatic lesions. The morphological investigation showed the main role of a local NPhT-induced vascular damage in the tumor growth and tumor spread inhibition. Murine tumors of different histological origin were not equally sensitive to the treatment. The results demonstrate a potential of ZnPcPs-mediated NPhT for treatment of surface tumors.

2.
Biomed Pharmacother ; 175: 116668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701565

ABSTRACT

The combination of radiation treatment and chemotherapy is currently the standard for management of cancer patients. However, safe doses do not often provide effective therapy, then pre-treated patients are forced to repeat treatment with often already increased tumor resistance to drugs and irradiation. One of the solutions we suggest is to improve primary course of radiation treatment via enhancing radiosensitivity of tumors by magnetic-guided iron oxide nanoparticles (magnetite). We obtained spherical heparinized iron oxide nanoparticles (hIONPs, ∼20 nm), characterized it by TEM, Infrared spectroscopy and DLS. Then hIONPs cytotoxicity was assessed for colon cancer cells (XTT assay) and cellular uptake of nanoparticles was analyzed with X-ray fluorescence. Combination of ionizing radiation (IR) and hIONPs in vitro caused an increase of G2/M arrest of cell cycle, mitotic errors and decrease in survival (compared with samples exposed to IR and hIONPs separately). The promising results were shown for magnetic-guided hIONPs in CT26-grafted BALB/C mice: the combination of intravenously administrated hIONPs and IR showed 20,8% T/C ratio (related to non-treated mice), while single radiation had no shown significant decrease in tumor growth (72,4%). Non-guided by magnets hIONPs with IR showed 57,9% of T/C. This indicates that ultra-small size and biocompatible molecule are not the key to successful nano-drug design, in each case, delivery technologies need to be improved when transferred to in vivo model.


Subject(s)
Colonic Neoplasms , Heparin , Magnetic Iron Oxide Nanoparticles , Mice, Inbred BALB C , Radiation-Sensitizing Agents , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/radiotherapy , Magnetic Iron Oxide Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/administration & dosage , Humans , Mice , Cell Line, Tumor , Heparin/chemistry , Heparin/pharmacology , Magnetite Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Cell Survival/drug effects
3.
Pharmaceutics ; 15(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37896166

ABSTRACT

The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.

4.
Molecules ; 28(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37241955

ABSTRACT

The development of sulfur-containing pharmaceutical compounds is important in the advancement of medicinal chemistry. Photosensitizers (PS) that acquire new properties upon incorporation of sulfur-containing groups or individual sulfur atoms into their structure are not neglected, either. In this work, a synthesis of sulfur-containing derivatives of natural chlorophyll a using Lawesson's reagent was optimized. Thiocarbonyl chlorins were shown to have a significant bathochromic shift in the absorption and fluorescence bands. The feasibility of functionalizing the thiocarbonyl group at the macrocycle periphery by formation of a Pt(II) metal complex in the chemotherapeutic agent cisplatin was shown. The chemical stability of the resulting conjugate in aqueous solution was studied, and it was found to possess a high cytotoxic activity against sarcoma S37 tumor cells that results from the combined photodynamic and chemotherapeutic effect on these cells.


Subject(s)
Organothiophosphorus Compounds , Chlorophyll A , Organothiophosphorus Compounds/chemistry , Sulfur
5.
Cancers (Basel) ; 14(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454947

ABSTRACT

The involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC). To integrate lipidomics, transcriptomics, and genomics data, we analyzed a transcriptome of 10 open database datasets obtained from tissues and blood cells of BC patients and SNP data for 33 genes related to oxylipin metabolism. We identified 18 oxylipins, metabolites of omega-3 or omega-6 polyunsaturated fatty acids, that were differentially expressed between BCvsHC patients, including anandamide, prostaglandins and hydroxydocosahexaenoic acids. DEGs analysis of tissue and blood samples from BC patients revealed that 19 genes for oxylipin biosynthesis change their expression level, with CYP2C19, PTGS2, HPGD, and FAAH included in the list of DEGs in the analysis of transcriptomes and the list of SNPs associated with BC. Results allow us to suppose that oxylipin signatures reflect the organism's level of response to the disease. Our data regarding changes in oxylipins at the system level show that oxylipin profiles can be used to evaluate the early stages of breast cancer.

6.
Int J Mol Sci ; 20(3)2019 Jan 27.
Article in English | MEDLINE | ID: mdl-30691192

ABSTRACT

One of the main problems in oncology is the development of drugs that cause the death of cancer cells without damaging normal cells. Another key problem to be solved is to suppress the drug resistance of cancer cells. The third important issue is to provide effective penetration of drug molecules to cancer cells. TRAIL (TNFα-related apoptosis inducing ligand)/Apo2L is a highly selective anticancer agent. However, the recombinant TRAIL protein having high efficiency against cancer cells in vitro was not effective in clinical trials. Recently we have discovered an acquisition of TRAIL resistance by cancer cells in confluent cultures, which is apparently a manifestation of the general phenomenon of multicellular resistance. The aim of this study was to evaluate whether the anticancer effect of the recombinant protein TRAIL in vivo can be improved by the suppression of multicellular TRAIL-resistance using sorafenib and a tumor-penetrating peptide iRGD, c(CRGDKGPDC). The results testified a great increase in the resistance of human fibrosarcoma HT-1080 cells to izTRAIL both in confluent cultures and in spheroids. Sorafenib administered at nontoxic concentration effectively suppressed confluent- or spheroid-mediated TRAIL-resistance of HT-1080 cells in vitro. Sorafenib combined with iRGD significantly improved the anticancer effect of the recombinant protein izTRAIL in HT-1080 human fibrosarcoma grafts in BALB/c nude mice. Consistent with this finding, multicellular TRAIL-resistance may be a reason of inefficacy of izTRAIL alone in vivo. The anticancer effect of the recombinant protein izTRAIL in vivo may be improved in combination with sorafenib, an inhibitor of multicellular TRAIL resistance and iRGD, the tumor-penetrating peptide.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Resistance, Neoplasm/drug effects , Fibrosarcoma/drug therapy , Oligopeptides/administration & dosage , Recombinant Proteins/administration & dosage , Sorafenib/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/pharmacology , Recombinant Proteins/pharmacology , Sorafenib/pharmacology , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Xenograft Model Antitumor Assays
7.
J Transl Med ; 13: 78, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25880666

ABSTRACT

BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS: We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS: We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS: We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Neoplasms/therapy , Polymers/chemistry , Thymidine Kinase/genetics , Thymidine Kinase/therapeutic use , Animals , Cations , Cell Line, Tumor , Cell Proliferation/drug effects , Ganciclovir/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Internal Ribosome Entry Sites/genetics , Lipids , Lymph Nodes/drug effects , Lymph Nodes/pathology , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasms/pathology , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Simplexvirus/enzymology
8.
Protein Expr Purif ; 65(1): 100-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19174190

ABSTRACT

The human iron-binding protein lactoferrin (hLf) has been implicated in a number of important physiological pathways, including those regulating immune function and tumor growth. In an effort to develop an efficient system for production of recombinant hLf (rhLf) that is structurally and functionally equivalent to the natural protein, we generated a recombinant CELO (chicken embryo lethal orphan) avian adenovirus containing an expression cassette for hLf. Embryonated chicken eggs were infected with the generated CELO-Lf virus. rhLf expression was measured in the allantoic fluid of infected eggs by ELISA three days later. The level of recombinant protein was about 0.8mg per embryo. rhLf was efficiently purified (up to 85% yield) from the allantoic fluid of infected eggs using affinity chromatography. rhLf produced in the allantoic fluid was characterized in comparison with natural hLf (nhLf) purified from human breast milk. SDS-PAGE, Western blotting and glycosylation analyzes showed that the recombinant protein had similar physical characteristics to nhLf. In addition, we demonstrated that the antioxidative and antimicrobial activity of rhLf produced in this system is equivalent to that of nhLf. Taken together, these results illustrate the utility of the described "recombinant CELO adenovirus-chicken embryo" system for production of functionally active rhLf. Efficient production of rhLf with accurate structure and function is an important step in furthering investigation of Lf as a potential human drug.


Subject(s)
Aviadenovirus , Carrier Proteins/biosynthesis , Carrier Proteins/chemistry , Gene Expression , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Allantois , Animals , Carrier Proteins/isolation & purification , Chick Embryo , Humans , Lactoferrin , Recombinant Proteins/isolation & purification , Zygote
SELECTION OF CITATIONS
SEARCH DETAIL
...