Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Physiol Biophys ; 42(4): 307-321, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449316

ABSTRACT

Cells of pre-implantation embryos are equipped with many morphological and functional systems through which they can synthesize specific proteins and effectively ensure the protection of early embryonic development. Here we present evidence for the existence of these systems in morphologically normal and abnormal bovine blastocyst stage embryos in vivo at the ultrastructural and actin cytoskeleton levels. The appearance of organelles in the trophectoderm (TE) and inner cell mass (ICM) cells, responsible for their synthetic activities and their role in the development of early bovine embryos are described. We point out the importance of endocytic processes and the participation of extracellular vesicles in the formation of intercellular contacts and homeostasis of the embryo microenvironment. Several changes in the ultrastructural morphology of embryos produced by different methods (ICSI, parthenogenetic AC/DC electrical activation, IVF with separated sperm) and freezing/thawed embryos are described. We also show alterations occurred in the organelles after viral contamination of embryos with BHV-1 and BVDV viruses, and in embryos from over-conditioned cows. Recorded changes in organelles and appearance of cellular autophagic structures (vesicles, multivesicular bodies and autophagolysosomes) may negatively affect embryo metabolism and lead to the emergence of pathological processes in TE and ICM cells of preimplantation embryos.


Subject(s)
Embryonic Development , Semen , Pregnancy , Female , Male , Animals , Cattle , Embryonic Development/physiology , Blastocyst/physiology , Blastocyst/ultrastructure
2.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36670897

ABSTRACT

Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L-1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L-1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post-warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6-7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.

3.
Arch Anim Breed ; 63(1): 203-209, 2020.
Article in English | MEDLINE | ID: mdl-32760787

ABSTRACT

The aim of this review was to evaluate the relationship between the body condition of cows and reproduction. Reproduction was evaluated from the viewpoint of animal husbandry traits, ovarian activity and embryo transfer. Main emphasis was given to the review of articles from the area of biotechnical methods (in vitro embryo production, embryo transfer). Most authors agree on the opinion that the worsening of the reproduction traits of cows is a result of changes in the body condition score (BCS) either under or over their average value. Worsening of reproduction traits was presented not only from a zootechnical viewpoint (e.g., calving interval, 56 d nonreturn rate, etc.) but also in term of ovarian activity, oocyte recovery and in vitro embryo production. In general, the body condition of cows is an important factor affecting female reproduction ability at the ovarian level.

SELECTION OF CITATIONS
SEARCH DETAIL
...