Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 60(23): 9769-9789, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29116786

ABSTRACT

We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.


Subject(s)
Benzeneacetamides/chemistry , Benzeneacetamides/pharmacology , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Epilepsy, Generalized/drug therapy , Animals , Benzeneacetamides/metabolism , Benzeneacetamides/pharmacokinetics , Brain/drug effects , Brain/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacokinetics , Dogs , Drug Discovery , Epilepsy, Generalized/metabolism , Guinea Pigs , Humans , Macaca fascicularis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats, Wistar , Structure-Activity Relationship
2.
Chimia (Aarau) ; 71(10): 722-729, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070417

ABSTRACT

We describe the discovery and optimization of new, brain-penetrant T-type calcium channel blockers. We present optimized compounds with excellent efficacy in a rodent model of generalized absence-like epilepsy. Along the fine optimization of a chemical series with a pharmacological target located in the CNS (target potency, brain penetration, and solubility), we successfully identified an Ames negative aminopyrazole as putative metabolite of this compound series. Our efforts culminated in the selection of compound 20, which was elected as a preclinical candidate.


Subject(s)
Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/drug effects , Drug Discovery , Epilepsy, Generalized/drug therapy , Animals , Calcium Channels, T-Type/physiology , Disease Models, Animal , Humans , Mice , Rats
3.
Bioorg Med Chem Lett ; 27(23): 5326-5331, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29074257

ABSTRACT

We identified and characterized a series of pyrrole amides as potent, selective Cav3.2-blockers. This series culminated with the identification of pyrrole amides 13b and 26d, with excellent potencies and/or selectivities toward the Cav3.1- and Cav3.3-channels. These compounds display poor physicochemical and DMPK properties, making their use difficult for in vivo applications. Nevertheless, they are well-suited for in vitro studies.


Subject(s)
Amides/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Drug Discovery , Pyrroles/pharmacology , Amides/chemical synthesis , Amides/chemistry , Animals , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 27(23): 5322-5325, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29066309

ABSTRACT

We identified and characterized a series of pyrazole amides as potent, selective Cav3.1-blockers. This series culminated with the identification of pyrazole amides 5a and 12d, with excellent potencies and/or selectivities toward the Cav3.2- and Cav3.3-channels. This compound displays poor DMPK properties, making its use difficult for in vivo applications. Nevertheless, this compound as well as analogous ones are well-suited for in vitro studies.


Subject(s)
Amides/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Drug Discovery , Pyrroles/pharmacology , Amides/chemical synthesis , Amides/chemistry , Animals , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Rats , Structure-Activity Relationship
6.
J Med Chem ; 59(23): 10661-10675, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933950

ABSTRACT

Despite the availability of numerous antiepileptic drugs, 20-30% of epileptic patients are pharmacoresistant with seizures not appropriately controlled. Consequently, new strategies to address this unmet medical need are required. T-type calcium channels play a key role in neuronal excitability and burst firing, and selective triple T-type calcium channel blockers could offer a new way to treat various CNS disorders, in particular epilepsy. Herein we describe the identification of new 1,4-benzodiazepines as brain penetrant and selective triple T-type calcium channel blockers. From racemic hit 4, optimization work led to the preparation of pyridodiazepine 31c with improved physicochemical properties, solubility, and metabolic stability. The racemic mixture was separated by chiral preparative HPLC, and the resulting lead compound (3R,5S)-31c showed promising efficacy in the WAG/Rij-rat model of generalized nonconvulsive absence-like epilepsy.


Subject(s)
Brain/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Animals , Brain/metabolism , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Rats , Rats, Inbred Strains , Seizures/drug therapy , Structure-Activity Relationship
7.
J Med Chem ; 59(18): 8398-411, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27579577

ABSTRACT

A series of dihydropyrazole derivatives was developed as potent, selective, and brain-penetrating T-type calcium channel blockers. An optimized derivative, compound 6c, was advanced to in vivo studies, where it demonstrated efficacy in the WAG/Rij rat model of generalized nonconvulsive, absence-like epilepsy. Compound 6c was not efficacious in the basolateral amygdala kindling rat model of temporal lobe epilepsy, and it led to prolongation of the PR interval in ECG recordings in rodents.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/therapeutic use , Epilepsy/drug therapy , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Animals , Anticonvulsants/pharmacokinetics , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Calcium Channel Blockers/pharmacokinetics , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Dogs , Electroencephalography , Epilepsy/metabolism , Epilepsy/physiopathology , Humans , Kindling, Neurologic/drug effects , Male , Pyrazoles/pharmacokinetics , Rats, Wistar
8.
Bioorg Med Chem Lett ; 20(21): 6286-90, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20843686

ABSTRACT

The discovery of a new series of piperidine-based renin inhibitors is described herein. SAR optimization upon the P3 renin sub-pocket is described, leading to the discovery of 9 and 41, two bioavailable renin inhibitors orally active at low doses in a transgenic rat model of hypertension.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Renin/antagonists & inhibitors , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Drug Design , Models, Molecular , Piperidines/chemistry , Protein Conformation , Rats , Structure-Activity Relationship , X-Ray Diffraction
9.
Bioorg Med Chem Lett ; 20(21): 6291-6, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20843690

ABSTRACT

The optimization of the 4-position of recently described new 3,4-disubstituted piperidine-based renin inhibitors is reported herein. The synthesis and characterization of compounds leading to the discovery of 11 (ACT-178882, MK-1597), a renin inhibitor with a suitable profile for development is described.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Renin/antagonists & inhibitors , Angiotensinogen/genetics , Animals , Animals, Genetically Modified , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Humans , Indicators and Reagents , Models, Molecular , Piperidines/chemistry , Rats , Renin/genetics , Stereoisomerism , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 20(7): 2204-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20206513

ABSTRACT

The discovery and SAR of a new series of substituted amino propanamide renin inhibitors are herein described. This work has led to the preparation of compounds with in vitro and in vivo profiles suitable for further development. Specifically, challenges pertaining to oral bioavailability, covalent binding and time-dependent CYP 3A4 inhibition were overcome thereby culminating in the identification of compound 50 as an optimized renin inhibitor with good efficacy in the hypertensive double-transgenic rat model.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Renin/antagonists & inhibitors , Renin/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Crystallography, X-Ray , Dogs , Humans , Models, Molecular , Protein Binding , Rats , Rats, Sprague-Dawley , Renin/chemistry , Structure-Activity Relationship
12.
J Med Chem ; 52(12): 3689-702, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19358611

ABSTRACT

Starting from known piperidine renin inhibitors, a new series of 3,9-diazabicyclo[3.3.1]nonene derivatives was rationally designed and prepared. Optimization of the positions 3, 6, and 7 of the diazabicyclonene template led to potent renin inhibitors. The substituents attached at the positions 6 and 7 were essential for the binding affinity of these compounds for renin. The introduction of a substituent attached at the position 3 did not modify the binding affinity but allowed the modulation of the ADME properties. Our efforts led to the discovery of compound (+)-26g that inhibits renin with an IC(50) of 0.20 nM in buffer and 19 nM in plasma. The pharmacokinetics properties of this and other similar compounds are discussed. Compound (+)-26g is well absorbed in rats and efficacious at 10 mg/kg in vivo.


Subject(s)
Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacology , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Renin/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...