Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytogenet Genome Res ; 161(12): 569-577, 2021.
Article in English | MEDLINE | ID: mdl-35093945

ABSTRACT

The subfamily Lonchorhininae encompasses 6 species of sword-nosed bats (Lonchorhina) and is one of the most problematic lineages in the Neotropical leaf-nosed bats (Phyllostomidae) phylogeny. There are at least 5 different hypotheses to explain when the subfamily diverged from the remaining phyllostomids, but none with robust statistical support. Here, we generated a chromosome painting homology map of Lonchorhina aurita karyotype (2n = 32 and FN = 60) using whole-chromosome probes of Macrotus californicus (MCA; 2n = 40 and FN = 60). We placed the karyotype changes of L. aurita in a phylogenetic context to discuss the most likely branching position of Lonchorhininae based on karyotypic evolution. We show that L. aurita has a derived karyotype with 24 segments homologous to the 20 MCA chromosomes used as probes. Comparative analyses between 7 published painted bats species across 4 phyllostomid subfamilies (Macrotinae, Phyllostominae, Glossophaginae, and Lonchophyllinae) revealed that one inversion (MCA 4inv) and one fusion (MCA 17 + 18) are shared derived features between the karyotypes of L. aurita and species of Phyllostominae not yet observed in other bats. Our data show that chromosomal homology maps may contribute with new insights into a long-standing phylogenetic debate that has endured for decades.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , Chromosome Painting , Evolution, Molecular , Phylogeny , Animals , Female , Karyotype , Karyotyping , Male
2.
J Mater Chem B ; 1(34): 4297-4305, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-32261026

ABSTRACT

The use of Quantum Dots (QDs) as fluorescent probes for understanding biological functions has emerged as an advantageous alternative over application of conventional fluorescent dyes. Intracellular delivery of QDs is currently a specific field of research. When QDs are tracking a specific target in live cells, they are mostly applied for extracellular membrane labeling. In order to study intracellular molecules and structures it is necessary to deliver free QDs into the cell cytosol. In this work, we adapted the freeze and thaw method to encapsulate water dispersed carboxyl-coated CdTe QDs into liposomes of different compositions, including cationic liposomes with fusogenic properties. We showed that labeled liposomes were able to fuse with live human stem cells and red blood cells in an endocytic-independent way. We followed the interactions of liposomes containing QDs with the cells. The results were minutely discussed and showed that QDs were delivered, but they were not freely diffused in the cytosol of those cells. We believe that this approach has the potential to be applied as a general route for encapsulation and delivery of any membrane-impermeant material into living cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...