Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930786

ABSTRACT

The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.


Subject(s)
Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Myrtaceae/chemistry , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Animals , Plant Oils/pharmacology , Plant Oils/chemistry
2.
Molecules ; 28(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37836629

ABSTRACT

Propolis has numerous biological properties and technological potential, but its low solubility in water makes its use quite difficult. With the advent of nanotechnology, better formulations with propolis, such as nanopropolis, can be achieved to improve its properties. Nanopropolis is a natural nanomaterial with several applications, including in the maintenance of food quality. Food safety is a global public health concern since food matrices are highly susceptible to contamination of various natures, leading to food loss and transmission of harmful foodborne illness. Due to their smaller size, propolis nanoparticles are more readily absorbed by the body and have higher antibacterial and antifungal activities than common propolis. This review aims to understand whether using propolis with nanotechnology can help preserve food and prevent foodborne illness. Nanotechnology applied to propolis formulations proved to be effective against pathogenic microorganisms of industrial interest, making it possible to solve problems of outbreaks that can occur through food.


Subject(s)
Foodborne Diseases , Propolis , Humans , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Anti-Bacterial Agents , Antifungal Agents , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...