Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37766309

ABSTRACT

The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.

2.
Int J Biol Macromol ; 119: 306-311, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30041038

ABSTRACT

Due mainly to their high level of affinity and specificity, therapeutic monoclonal antibodies (mAbs) have been frequently selected as treatment for cancer, autoimmune or chronic inflammatory diseases. Despite the increasing number of mAbs and related products in the biopharmaceutical market, they are still expensive, can cause undesired side effects, and eventually cause resistance. Antibody engineering, which emerged to overcome limitations faced by mAb therapy, has supported the development of modified mAbs for immunotherapy. As part of this approach, researchers have invested in obtaining antibody fragments, as well as in Fc region modifications, since interactions with Fc receptors influence an antibody's half-life and mechanism of action. Thus, Fc engineering results in antibodies with more desirable characteristics and functions for which they are intended, creating "fit-for-purpose" antibodies with reduced side effects. Furthermore, aglycosylated antibodies, produced in bacterial cultivation, have been an alternative to create new effector functional human immunotherapeutics, while reducing mAb therapy costs. This review highlights some features that enhance mAb performance, related to the improvement of antibody half-life and effector responses by both Fc-engineering and glycoengineering.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/pharmacokinetics , Immunoglobulin Fc Fragments/genetics , Protein Engineering , Animals , Antibodies, Monoclonal/chemistry , Antibody Affinity , Carbohydrates/chemistry , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Protein Binding , Receptors, Fc/chemistry , Receptors, Fc/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...