Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 715991, 2021.
Article in English | MEDLINE | ID: mdl-34512595

ABSTRACT

Mangrove microbiomes play an essential role in the fate of mangroves in our changing planet, but the factors regulating the biogeographical distribution of mangrove microbial communities remain essentially vague. This paper contributes to our understanding of mangrove microbiomes distributed along three biogeographical provinces and ecoregions, covering the exuberant mangroves of Amazonia ecoregion (North Brazil Shelf) as well as mangroves located in the southern limit of distribution (Southeastern ecoregion, Warm Temperate Southwestern Atlantic) and mangroves localized on the drier semi-arid coast (Northeastern ecoregion, Tropical Southwestern Atlantic), two important ecotones where poleward and landward shifts, respectively, are expected to occur related to climate change. This study compared the microbiomes associated with the conspicuous red mangrove (Rhizophora mangle) root soils encompassing soil properties, latitudinal factors, and amplicon sequence variants of 105 samples. We demonstrated that, although the northern and southern sites are over 4,000 km apart, and despite R. mangle genetic divergences between north and south populations, their microbiomes resemble each other more than the northern and northeastern neighbors. In addition, the northeastern semi-arid microbiomes were more diverse and displayed a higher level of complexity than the northern and southern ones. This finding may reflect the endurance of the northeast microbial communities tailored to deal with the stressful conditions of semi-aridity and may play a role in the resistance and growing landward expansion observed in such mangroves. Minimum temperature, precipitation, organic carbon, and potential evapotranspiration were the main microbiota variation drivers and should be considered in mangrove conservation and recovery strategies in the Anthropocene. In the face of changes in climate, land cover, biodiversity, and chemical composition, the richness and complexity harbored by semi-arid mangrove microbiomes may hold the key to mangrove adaptability in our changing planet.

2.
Commun Biol ; 1: 135, 2018.
Article in English | MEDLINE | ID: mdl-30272014

ABSTRACT

Biodiversity underlies ecosystem functioning. While aboveground biodiversity is often well studied, the belowground microbiome, in particular protists, remains largely unknown. Indeed, holistic insights into soil microbiome structures in natural soils, especially in hyperdiverse biomes such as the Brazilian Cerrado, remain unexplored. Here, we study the soil microbiome across four major vegetation zones of the Cerrado, ranging from grass-dominated to tree-dominated vegetation with a focus on protists. We show that protist taxon richness increases towards the tree-dominated climax vegetation. Early successional habitats consisting of primary grass vegetation host most potential plant pathogens and least animal parasites. Using network analyses combining protist with prokaryotic and fungal sequences, we show that microbiome complexity increases towards climax vegetation. Together, this suggests that protists are key microbiome components and that vegetation succession towards climax vegetation is stimulated by higher loads of animal and plant pathogens. At the same time, an increase in microbiome complexity towards climax vegetation might enhance system stability.

3.
Braz. j. microbiol ; 49(3): 522-528, July-Sept. 2018. tab, graf
Article in English | LILACS | ID: biblio-1039267

ABSTRACT

Abstract We used 16S rRNA sequencing to assess the archaeal communities across a gradient of Cerrado. The archaeal communities differed across the gradient. Crenarcheota was the most abundant phyla, with Nitrosphaerales and NRPJ as the predominant classes. Euryachaeota was also found across the Cerrado gradient, including the classes Metanocellales and Methanomassiliicoccaceae.


Subject(s)
Plants/microbiology , Soil Microbiology , Archaea/isolation & purification , Phylogeny , Plants/classification , Soil/chemistry , Brazil , Archaea/classification , Archaea/growth & development , Archaea/genetics , Biodiversity , Plant Development
4.
Sci Rep ; 8(1): 11755, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082922

ABSTRACT

The application of composted tannery sludge (CTS) has promoted shifts in soil chemical properties and, therefore, can affect the soil bacterial community. This study assessed the effect of the CTS on the soil bacterial community over time. The CTS was applied at five rates (0, 2.5, 5, 10 and 20 t/ha), and the bacterial community was evaluated for 180 days. The principal curve response (PRC) analysis showed that the most abundant phyla were not influenced by the CTS rates over time, while the analysis of the bacterial community showed that some of the less abundant phyla were influenced by the CTS rates. Similarly, the PRC analysis for the bacterial classes showed the significant effect of the CTS rates. The redundancy analyses for the bacterial phyla and classes showed the relationship between the significant chemical properties and the bacterial community of the soil after the CTS amendment over time. Therefore, there was a shift in the bacterial community over time with the application of the composted tannery sludge. Our study has shown that the less abundant bacterial groups were more influenced by the CTS than the most abundant bacterial groups and that these bacterial groups were driven by soil chemical properties, primarily chromium (Cr) and the soil pH.


Subject(s)
Bacteria/metabolism , Sewage/microbiology , Soil Pollutants/analysis , Tanning , Chromium/analysis , Industrial Waste/analysis , Soil
5.
Braz J Microbiol ; 49(3): 522-528, 2018.
Article in English | MEDLINE | ID: mdl-29459210

ABSTRACT

We used 16S rRNA sequencing to assess the archaeal communities across a gradient of Cerrado. The archaeal communities differed across the gradient. Crenarcheota was the most abundant phyla, with Nitrosphaerales and NRPJ as the predominant classes. Euryachaeota was also found across the Cerrado gradient, including the classes Metanocellales and Methanomassiliicoccaceae.


Subject(s)
Archaea/isolation & purification , Plants/microbiology , Soil Microbiology , Archaea/classification , Archaea/genetics , Archaea/growth & development , Biodiversity , Brazil , Phylogeny , Plant Development , Plants/classification , Soil/chemistry
6.
Antonie Van Leeuwenhoek ; 110(4): 457-469, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28062969

ABSTRACT

The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.


Subject(s)
Acidobacteria/isolation & purification , Actinobacteria/isolation & purification , Firmicutes/isolation & purification , Planctomycetales/isolation & purification , Proteobacteria/isolation & purification , Soil Microbiology , Verrucomicrobia/isolation & purification , Acidobacteria/classification , Acidobacteria/genetics , Actinobacteria/classification , Actinobacteria/genetics , Biodiversity , Brazil , Ecosystem , Firmicutes/classification , Firmicutes/genetics , Planctomycetales/classification , Planctomycetales/genetics , Plants/microbiology , Proteobacteria/classification , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/classification , Verrucomicrobia/genetics
7.
J Microbiol ; 55(4): 273-279, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28127719

ABSTRACT

The preserved Cerrado from Northeastern Brazil presents different physicochemical properties and plant diversity, which can influence the fungal communities. Therefore, we evaluated the fungal diversity in preserved sites, at Sete Cidades National Park, across a gradient of vegetation that included Campo graminoide, Cerrado stricto sensu, Cerradao, and Floresta decidual. Of all of the operational taxonomic units (OTUs) obtained, the Floresta decidual presented the highest richness. Ascomycota were the most abundant phylum (45%), followed by Basidiomycota (32%). Basal fungi and other phyla accounted for 23% of the total dataset. Agaricomycetes, Eurotiomycetes, Lecanoromycetes, Basidiobolus, Dothideomycetes, and Taphrinomycetes were the most abundant classes of fungi found across the gradient of Cerrado vegetation. In conclusion, our study suggests that the Brazilian Cerrado from Sete Cidades National Park presents a high fungal diversity and includes sources of new fungal species for biotechnological purposes.


Subject(s)
Biodiversity , Fungi/classification , Fungi/isolation & purification , Soil Microbiology , Brazil , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fungi/genetics , Genes, rRNA , Parks, Recreational , RNA, Fungal/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
8.
J Exp Zool A Ecol Genet Physiol ; 325(7): 425-33, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27460953

ABSTRACT

Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.


Subject(s)
Amphibian Proteins/chemistry , Anura/metabolism , Cloaca/metabolism , Oviducts/metabolism , Amphibian Proteins/analysis , Amphibian Proteins/isolation & purification , Amphibian Proteins/metabolism , Animals , Anura/physiology , Female , Male , Protein Conformation , Proteomics , Reproduction , Surface-Active Agents/chemistry
9.
Genet Mol Res ; 5(1): 216-23, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16755512

ABSTRACT

During its biosynthesis in developing Canavalia brasiliensis seeds, the lectin ConBr undergoes a form of protein splicing in which the order of the N- and C-domains of the protein is reversed. To investigate whether these events can occur in other eukaryotic organisms, an expression system based on Pichia pastoris cells was established. A DNA fragment encoding prepro-ConBr was cloned into the vector pPICZB, and the recombinant plasmid was transformed in P. pastoris strain GS115. Ten clones were screened for effective recombinant protein production. Based on Western blot analysis of the two clones with the highest level of protein expression: 1) diffuse high-molecular mass immunoreactive bands were produced as early as 24 h after induction; 2) a single-, high-molecular mass protein was secreted into the medium, and 3) a significant fraction of the recombinant polypeptides that cross-reacted with anti-ConBr antibodies comprised a band of approximately 34.5 kDa. Diffuse protein bands with high molecular masses are attributed to hyperglycosylation at the single potential N-glycosylation site located in the linker peptide of prepro-ConBr. In contrast, native ConBr is made up of three polypeptides, the intact alpha chain (aa 1-237) and the fragments beta (aa 1-118) and gamma (aa 119-237), which have apparent molecular masses of 30, 16 and 12 kDa, respectively. Apparently, the yeast P. pastoris is not able to carry out all the complex post-translational proteolytic processing necessary for the biosynthesis of ConBr.


Subject(s)
Canavalia/chemistry , Gene Expression Regulation, Plant/genetics , Models, Genetic , Pichia/metabolism , Plant Lectins/genetics , Protein Splicing/genetics , Blotting, Western , Genetic Vectors , Plant Lectins/biosynthesis , Plant Lectins/chemistry , Polymerase Chain Reaction
10.
Genet Mol Res ; 3(1): 117-33, 2004 Mar 31.
Article in English | MEDLINE | ID: mdl-15100993

ABSTRACT

The complete genome sequence of the free-living bacterium Chromobacterium violaceum has been determined by a consortium of laboratories in Brazil. Almost 500 open reading frames (ORFs) coding for transport-related membrane proteins were identified in C. violaceum, which represents 11% of all genes found. The main class of transporter proteins is the primary active transporters (212 ORFs), followed by electrochemical potential-driven transporters (154 ORFs) and channels/pores (62 ORFs). Other classes (61 ORFs) include group translocators, transport electron carriers, accessory factors, and incompletely characterized systems. Therefore, all major categories of transport-related membrane proteins currently recognized in the Transport Protein Database (http://tcdb.ucsd.edu/tcdb) are present in C. violaceum. The complex apparatus of transporters of C. violaceum is certainly an important factor that makes this bacterium a dominant microorganism in a variety of ecosystems in tropical and subtropical regions. From a biotechnological point of view, the most important finding is the transporters of heavy metals, which could lead to the exploitation of C. violaceum for bioremediation.


Subject(s)
Chromobacterium/genetics , Membrane Transport Proteins/genetics , Open Reading Frames/genetics , Biological Transport/genetics , Chromobacterium/metabolism , Membrane Transport Proteins/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...