Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Med Chem ; 2024 06 05.
Article in English | MEDLINE | ID: mdl-38847259

ABSTRACT

INTRODUCTION: Rhipicephalus microplus, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control. METHOD: To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from Fridericia platyphylla roots and to evaluate their potential as inhibitors of R. microplus GST. RESULTS: In vitro assays confirmed the inhibition of R. microplus GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC50 values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a threedimensional model of R. microplus GST revealed predicted interactions with MolDock Scores of - 142.537, -126.831, -108.571, and -123.041, respectively. Both in silico and in vitro analyses show that brachydins are potential inhibitors of R. microplus GST. CONCLUSION: The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.

2.
Exp Parasitol ; 243: 108398, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228702

ABSTRACT

Rhipicephalus (Boophilus) microplus (Canestrini, 1887) is one of the most important ectoparasites of cattle, causing severe economic losses in tropical and subtropical regions of the world. The selection of resistance to the most commonly used commercial acaricides has stimulated the search for new products for tick control. The identification and development of drugs that inhibit key tick enzymes, such as glutathione S-transferase (GST), is a rational approach that has already been applied to other parasites than ticks. In this context, alkaloids such as anonaine display several biological activities, including an acaricidal effect. This study aimed to assess the specific inhibition of the R. microplus GST by anonaine, and analyze the effect on ticks when anonaine is combined with cypermethrin. For this purpose, a molecular docking analysis was performed using an R. microplus GST three-dimensional structure model with anonaine and compared with a human GST-anonaine complex. The absorption, distribution, metabolism, excretion, and toxicity properties of anonaine were also predicted. Then, for in vitro analyses, anonaine was isolated from Annona crassiflora (Martius, 1841) leaves. The inhibition of purified recombinant R. microplus GST (rRmGST) by anonaine and the effect of this alkaloid on cypermethrin efficacy towards R. microplus were assessed. Anonaine has a higher affinity to the tick enzyme than to the human enzyme in silico and has moderate toxicity, being able to inhibit, in vitro, rRmGST up to 37.5% in a dose-dependent manner. Although anonaine alone has no activity against R. microplus, it increased the cypermethrin effect on larvae, reducing the LC50 from 44 to 22 µg/mL. In conclusion, anonaine is a natural compound that can increase the effect of cypermethrin against R. microplus.


Subject(s)
Acaricides , Annona , Rhipicephalus , Humans , Cattle , Animals , Glutathione Transferase , Molecular Docking Simulation , Acaricides/pharmacology , Larva
3.
Rev Bras Parasitol Vet ; 30(2): e002221, 2021.
Article in English | MEDLINE | ID: mdl-34076049

ABSTRACT

This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Subject(s)
Acaricides , Cholinesterase Inhibitors/pharmacology , Cymbopogon , Oils, Volatile , Rhipicephalus/enzymology , Acaricides/pharmacology , Acetylcholinesterase , Animals , Larva , Oils, Volatile/pharmacology
4.
Rev. bras. parasitol. vet ; 30(2): e002221, 2021. graf
Article in English | LILACS | ID: biblio-1251367

ABSTRACT

Abstract This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Resumo Este estudo relata a ação de óleos essenciais de cinco plantas na atividade de acetilcolinesterases (AChE) nativas e recombinantes de Rhipicephalus microplus. A atividade enzimática do extrato de acetilcolinesterase nativa suscetível (S.AChE) e resistente (R.AChE) e da enzima recombinante (rBmAChE1) foi determinada. Um teste de inibição da AChE foi utilizado, para verificar o efeito dos óleos essenciais sobre a atividade enzimática. Óleos essenciais de Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var. dulcis inibiram a atividade de S.AChE e R.AChE. Os óleos das duas espécies de Citrus inibiram S.AChE e R.AChE de maneira semelhante, mas mostraram maior inibição sobre R.AChE. O óleo de E. globulus inibiu a AChE nativa, mas sem diferença entre a S.AChE e a R.AChE; no entanto, 71% de inibição para rBmAChE1 foi observada. O óleo de Mentha piperita também inibiu S.AChE e R.AChE, mas houve inibição significativa apenas nas concentrações mais altas testadas. O óleo de Cymbopogon winterianus não inibiu a AChE. Estudos adicionais são necessários com os óleos das duas espécies de Citrus que inibiram a R.AchE, devido ao problema de R. microplus resistente aos organofosforados ter como alvo AChE. O óleo de C. winterianus pode ser usado contra populações de R. microplus, que são resistentes a organofosforados, porque suas propriedades acaricidas agem por mecanismos diferentes.


Subject(s)
Animals , Oils, Volatile/pharmacology , Cholinesterase Inhibitors/pharmacology , Cymbopogon , Rhipicephalus/enzymology , Acaricides/pharmacology , Acetylcholinesterase , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...