Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Main subject
Publication year range
1.
Nanotechnology ; 28(49): 495401, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29027908

ABSTRACT

Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm-1 (i.e., 1 GV m-1), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

2.
Sci Rep ; 7(1): 932, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428625

ABSTRACT

Breakdown of a dielectric material at high electric fields significantly limits the applicability of metal-dielectric-metal capacitors for energy storage applications. Here we demonstrate that the insulating properties of atomic-layer-deposited Al2O3 thin films in Al/Al2O3/Al trilayers can recover after the breakdown. The recovery has been observed in samples with the dielectric thickness spanning from 4 to 9 nm. This phenomenon holds promise for a new generation of capacitors capable of restoring their properties after the dielectric breakdown. Also, if employed in capacitor banks, the recovery process will ensure that the bank remains operational even if a breakdown occurs.

3.
Nanotechnology ; 27(47): 47LT02, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27782000

ABSTRACT

The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c âˆ¼ (1-T/T c)3/2. We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.

4.
Sci Rep ; 5: 8323, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25662746

ABSTRACT

While behavior of equilibrium systems is well understood, evolution of nonequilibrium ones is much less clear. Yet, many researches have suggested that the principle of the maximum entropy production is of key importance in complex systems away from equilibrium. Here, we present a quantitative study of large ensembles of carbon nanotubes suspended in a non-conducting non-polar fluid subject to a strong electric field. Being driven out of equilibrium, the suspension spontaneously organizes into an electrically conducting state under a wide range of parameters. Such self-assembly allows the Joule heating and, therefore, the entropy production in the fluid, to be maximized. Curiously, we find that emerging self-assembled structures can start to wiggle. The wiggling takes place only until the entropy production in the suspension reaches its maximum, at which time the wiggling stops and the structure becomes quasi-stable. Thus, we provide strong evidence that maximum entropy production principle plays an essential role in the evolution of self-organizing systems far from equilibrium.

5.
Phys Rev Lett ; 110(24): 247001, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165954

ABSTRACT

We perform measurements of phase-slip-induced switching current events on different types of superconducting weak links and systematically study statistical properties of the switching current distributions. We employ two types of devices in which a weak link is formed either by a superconducting nanowire or by a graphene flake subject to proximity effect. We demonstrate that independently of the nature of the weak link, higher moments of the distribution take universal values. In particular, the third moment (skewness) of the distribution is close to -1 both in thermal and quantum regimes. The fourth moment (kurtosis) also takes a universal value close to 5. The discovered universality of skewness and kurtosis is confirmed by an analytical model. Our numerical analysis shows that introduction of extraneous noise into the system leads to significant deviations from the universal values. We suggest using the discovered universality of higher moments as a robust tool for checking against undesirable effects on noise in various types of measurements.

6.
Phys Rev Lett ; 108(9): 097003, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463661

ABSTRACT

We study the stochastic nature of switching current in hysteretic current-voltage characteristics of superconductor-graphene-superconductor junctions. We find that the dispersion of the switching current distribution scales with temperature as σ(I) proportional to T(α(G)) with α(G) as low as 1/3. This observation is in sharp contrast to the known Josephson junction behavior where σ(I) proportional to T(α(J)) with α(J)=2/3. We propose an explanation using a generalized version of Kurkijärvi's theory for the flux stability in rf-SQUID and attribute this anomalous effect to the temperature dependence of the critical current which persists down to low temperatures.

7.
Phys Rev Lett ; 101(22): 227003, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19113514

ABSTRACT

We establish the superconductor-insulator phase diagram for quasi-one-dimensional wires by measuring a large set of MoGe nanowires. This diagram is roughly consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely, with the critical resistance being equal to RQ=h/4e2. Deviations from this boundary for a small fraction of the samples prompt us to suggest an alternative phase diagram, which matches the data exactly. Transport properties of wires in the superconducting phase are dominated by phase slips, whereas insulating nanowires exhibit a weak Coulomb blockade behavior.

8.
Phys Rev Lett ; 97(13): 137001, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17026063

ABSTRACT

We study the effect of an applied magnetic field on sub-10-nm wide MoGe and Nb superconducting wires. We find that magnetic fields can enhance the critical supercurrent at low temperatures, and do so more strongly for narrower wires. We conjecture that magnetic moments are present, but their pair-breaking effect, active at lower magnetic fields, is suppressed by higher fields. The corresponding microscopic theory, which we have developed, quantitatively explains all experimental observations, and suggests that magnetic moments have formed on the wire surfaces.

9.
Phys Rev Lett ; 94(1): 017004, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698123

ABSTRACT

The effects of a strong magnetic field on superconducting Nb and MoGe nanowires with diameter approximately 10 nm have been studied. We have found that the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory of thermally activated phase slips is applicable in a wide range of magnetic fields and describes well the temperature dependence of the wire resistance, over 11 orders of magnitude. The field dependence of the critical temperature, T(c), extracted from the LAMH fits is in good quantitative agreement with the theory of pair-breaking perturbations that takes into account both spin and orbital contributions. The extracted spin-orbit scattering time agrees with an estimate tau(s.o.) approximately tau(variant Planck's over 2pic/Ze(2))(4), where tau is the elastic scattering time and Z is the atomic number.

10.
Phys Rev Lett ; 87(21): 217003, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11736371

ABSTRACT

We have measured the resistance vs temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1 microm. With decreasing cross-sectional areas, the wires display increasingly broad resistive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to T(c) and quantum phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of R(N)/R(q). Our measurements provide strong evidence for QPS in thin superconducting wires.

11.
Nature ; 404(6781): 971-4, 2000 Apr 27.
Article in English | MEDLINE | ID: mdl-10801120

ABSTRACT

It is of fundamental importance to establish whether there is a limit to how thin a superconducting wire can be, while retaining its superconducting character--and if there is a limit, to determine what sets it. This issue may also be of practical importance in defining the limit to miniaturization of superconducting electronic circuits. At high temperatures, the resistance of linear superconductors is caused by excitations called thermally activated phase slips. Quantum tunnelling of phase slips is another possible source of resistance that is still being debated. It has been theoretically predicted that such quantum phase slips can destroy superconductivity in very narrow wires. Here we report resistance measurements on ultrathin (< or = 10 nm) nanowires produced by coating carbon nanotubes with a superconducting Mo-Ge alloy. We find that nanowires can be superconducting or insulating depending on the ratio of their normal-state resistance (R(N)) to the quantum resistance for Cooper pairs (Rq). If R(N) < Rq, quantum tunnelling of phase slips is prohibited by strong damping, and so the wires stay superconducting. In contrast, we observe an insulating state for R(N) > Rq, which we explain in terms of proliferation of quantum phase slips and a corresponding localization of Cooper pairs.

12.
Nature ; 403(6770): 635-8, 2000 Feb 10.
Article in English | MEDLINE | ID: mdl-10688194

ABSTRACT

Attempts to infer DNA electron transfer from fluorescence quenching measurements on DNA strands doped with donor and acceptor molecules have spurred intense debate over the question of whether or not this important biomolecule is able to conduct electrical charges. More recently, first electrical transport measurements on micrometre-long DNA 'ropes', and also on large numbers of DNA molecules in films, have indicated that DNA behaves as a good linear conductor. Here we present measurements of electrical transport through individual 10.4-nm-long, double-stranded poly(G)-poly(C) DNA molecules connected to two metal nanoelectrodes, that indicate, by contrast, large-bandgap semiconducting behaviour. We obtain nonlinear current-voltage curves that exhibit a voltage gap at low applied bias. This is observed in air as well as in vacuum down to cryogenic temperatures. The voltage dependence of the differential conductance exhibits a peak structure, which is suggestive of the charge carrier transport being mediated by the molecular energy bands of DNA.


Subject(s)
DNA/chemistry , DNA/metabolism , Deoxyribonuclease I/metabolism , Electric Conductivity , Microelectrodes
13.
Article in English | MEDLINE | ID: mdl-11969677

ABSTRACT

Charge transport in electrorheological fluids is studied experimentally under strongly nonequilibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such a system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.

14.
Phys Rev B Condens Matter ; 53(13): 8553-8560, 1996 Apr 01.
Article in English | MEDLINE | ID: mdl-9982363
SELECTION OF CITATIONS
SEARCH DETAIL
...