Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 36(45): 13830-7, 1997 Nov 11.
Article in English | MEDLINE | ID: mdl-9374860

ABSTRACT

The organization and interaction of chlorophylls (Chl) and the kinetics of the energy transfer in the core antenna of photosystem I (PSI) trimeric and monomeric complexes, isolated from Spirulina platensis with Triton X-100 have been studied by stationary and time-resolved fluorescence. At 295 K both complexes show an unusually intense long-wavelength emission band with prominent peaks at 730 nm (trimers) or 715 nm (monomers), whose intensity is independent of the redox state of P700. A broad band extending from 710 to 740 nm in the absorption and fluorescence excitation spectra of trimers also indicates the existence of the longwave Chls at 295 K. The 77 K fluorescence emission of PSI trimers frozen after addition of dithionite under illumination (P700 and the PSI acceptor side reduced) shows an intense band at 760 (F760) and a smaller one at 725 nm (F725); when P700 is oxidized, the intensity of F760 decreases about 15 times. In the 77 K spectrum of monomers only F725 is present in the longwave region, and its intensity does not depend on the redox state of P700. Bands of Chls with maxima near 680, 710, and 738 nm were found in the 77 K excitation spectrum of trimers, and bands near 680 and 710 nm were seen in the spectrum of monomers. Five spectrally different red Chl forms in PSI trimers and three red Chl in monomers have been resolved by deconvolution of their 77 K absorption spectra. The difference absorption spectrum, trimers-minus-monomers, shows that the appearance of the 735 nm band in trimers is accompanied by a decrease of 708, 698, and 688 nm bands present in monomers. The reversible changes of F760 intensity of Spirulina membranes as a result of their salt treatment confirm the idea that the most longwave Chl form originates from an interaction of Chls bound to different monomeric PSI subunits forming the trimer. The time-resolved fluorescence spectra of PSI trimers and monomers, measured at 287 K in the region 680-770 nm, are substantially different, although a set of similar lifetimes (9, approximately 30, approximately 66, and 1400-2200 ps) was necessary for a good fit. No effect of P700 redox state was observed on the fluorescence kinetics of both complexes at 287 K.


Subject(s)
Chlorophyll/chemistry , Cyanobacteria/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Chlorophyll/metabolism , Cyanobacteria/metabolism , Energy Transfer , Kinetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Spectrometry, Fluorescence
2.
FEBS Lett ; 334(1): 79-82, 1993 Nov 08.
Article in English | MEDLINE | ID: mdl-8224233

ABSTRACT

Oligomeric and monomeric forms of chlorophyll-protein complexes of photosystem I (PSI) have been isolated from the mesophilic cyanobacterium Spirulina [(1992) FEBS Lett. 309, 340-342]. Electron microscopic analysis of the complexes showed that the oligomeric form is a trimer of the shape and dimensions similar to those of the trimer from thermophilic cyanobacteria. The chlorophyl ratio in the isolated trimer and monomer was found to be 7:3. The trimeric form of PSI complex in contrast to the monomeric one contains the chlorophyll emitting at 760 nm (77K), which is also found in Spirulina membranes and therefore could be used as an intrinsic probe for the trimeric complex. The 77K circular dichroism spectrum of the trimeric form is much more similar to that of Spirulina membranes than the spectrum of the monomer. Thus, the trimeric PSI complexes exist and dominate in the Spirulina membranes.


Subject(s)
Cyanobacteria/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Circular Dichroism , Cyanobacteria/ultrastructure , Light-Harvesting Protein Complexes , Microscopy, Electron , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Photosynthetic Reaction Center Complex Proteins/ultrastructure , Photosystem I Protein Complex
3.
FEBS Lett ; 309(3): 340-2, 1992 Sep 14.
Article in English | MEDLINE | ID: mdl-1516708

ABSTRACT

Two types of chlorophyll-protein complexes of photosystem I (PSIa, PSIc) have been isolated from the membranes of Spirulina platensis using a Triton X-100 treatment and chromatography on DEAE-Toyopearl. The complexes are equally enriched with P700 (Chl: P700 = 100-110) but show different electrophoretic molecular masses--140 (PSIa) and 320 kDa (PSIc)--and differ in the content of long-wavelength absorbing Chl. PSIa has a typical PSI fluorescence band at 730 nm (F730) as the main band at 77 K, whereas PSIc is responsible for F760, the intensity of which depends on the redox state of P700. PSIc only shows 77 K light-induced variable fluorescence at 760 typical of Spirulina membranes and cells.


Subject(s)
Cell Membrane/ultrastructure , Chlorophyll/isolation & purification , Cyanobacteria/ultrastructure , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Electrophoresis, Polyacrylamide Gel , Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...