Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nano Res ; 15(3): 2512-2521, 2022.
Article in English | MEDLINE | ID: mdl-34493951

ABSTRACT

We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors' electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications. Electronic Supplementary Material: Supplementary material (details on the dielectrophoretic deposition, AuNP functionalization optimization, full range of experimental and model H2S sensing response up to 820 ppb, and sensing response to NO gas) is available in the online version of this article at 10.1007/s12274-021-3771-7.

2.
Phys Chem Chem Phys ; 21(43): 24007-24016, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31646309

ABSTRACT

Flavin mononucleotide sodium (FMNS) was recently reported as a highly efficient dispersant for the exfoliation of defect-free, few-layer, stabilized aqueous graphene dispersions. Most importantly, FMNS is innocuous and eco-friendly and can facilitate biomedical applications of graphene. Complementing those experimental studies, the influence of FMNS molecules on the aggregation behavior of graphene flakes in solution is investigated via all-atom molecular dynamics simulations. The stabilizing role of FMNS is demonstrated by the potential of mean force calculations for pairs of graphene flakes covered by FMNS molecules. These results indicate that the optimal amount ratio between FMNS molecules and carbon atoms in monolayer graphene is about 0.026 leading to a surface coverage of 0.34 FMNS molecules per nm2 on the graphene flakes. Overall the simulations support the high efficiency of FMNS as a surfactant compared to other surfactants.

3.
Nat Commun ; 10(1): 4225, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548543

ABSTRACT

Engineering conducting polymer thin films with morphological homogeneity and long-range molecular ordering is intriguing to achieve high-performance organic electronics. Polyaniline (PANI) has attracted considerable interest due to its appealing electrical conductivity and diverse chemistry. However, the synthesis of large-area PANI thin film and the control of its crystallinity and thickness remain challenging because of the complex intermolecular interactions of aniline oligomers. Here we report a facile route combining air-water interface and surfactant monolayer as templates to synthesize crystalline quasi-two-dimensional (q2D) PANI with lateral size ~50 cm2 and tunable thickness (2.6-30 nm). The achieved q2D PANI exhibits anisotropic charge transport and a lateral conductivity up to 160 S cm-1 doped by hydrogen chloride (HCl). Moreover, the q2D PANI displays superior chemiresistive sensing toward ammonia (30 ppb), and volatile organic compounds (10 ppm). Our work highlights the q2D PANI as promising electroactive materials for thin-film organic electronics.

4.
ACS Appl Mater Interfaces ; 11(24): 21807-21814, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31099237

ABSTRACT

We explore an n-type doping strategy of semiconducting single-walled carbon nanotubes (sc-SWCNTs) by a covalent functionalization in ammonia plasma and elucidate the effect of air exposure on thermoelectric properties of the sc-SWCNTs before and after doping. Without doping, the sc-SWCNT films have a Seebeck coefficient of 125 µV/K and a power factor (PF) of 95 µW/m K2 in ambient conditions. Heating of such films in air up to 100 °C and above is not changing their thermoelectric properties noticeably; however, the films can be converted to an n-type material simply by gas desorption at low pressure and room temperature, showing an outstanding negative Seebeck coefficient of -133 µV/K and a PF of 55 µW/m K2. Doping of the sc-SWCNT films with ammonia plasma leads to the reduction of the Seebeck coefficient down to 40 µV/K in ambient conditions, which is the result of two competing effects: attachment of electron-donating functional groups during plasma treatment and adsorption of water molecules when exposing films to air. At temperatures slightly higher than the boiling point of water, the doped films of sc-SWCNTs show the lowest Seebeck coefficient of -80 µV/K in air. A similar value of the Seebeck coefficient is obtained for the same films at low pressures and room temperature. To our knowledge, this is one of the best values ever reported for n-type pure carbon nanotube films.

5.
ACS Sens ; 3(1): 79-86, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29186954

ABSTRACT

Fabrication and comparative analysis of the gas sensing devices based on individualized single-walled carbon nanotubes of four different types (pristine, boron doped, nitrogen doped, and semiconducting ones) for detection of low concentrations of ammonia is presented. The comparison of the detection performance of different devices, in terms of resistance change under exposure to ammonia at low concentrations combined with the detailed analysis of chemical bonding of dopant atoms to nanotube walls sheds light on the interaction of NH3 with carbon nanotubes. Furthermore, chemoresistive measurements showed that the use of semiconducting nanotubes as conducting channels leads to the highest sensitivity of devices compared to the other materials. Electrical characterization and analysis of the structure of fabricated devices showed a close relation between amount and quality of the distribution of deposited nanotubes and their sensing properties. All measurements were performed at room temperature, and the power consumption of gas sensing devices was as low as 0.6 µW. Finally, the route toward an optimal fabrication of nanotube-based sensors for the reliable, energy-efficient sub-ppm ammonia detection is proposed, which matches the pave of advent of future applications.


Subject(s)
Ammonia/analysis , Nanotubes, Carbon/chemistry , Equipment Design , Gases/analysis , Temperature
6.
Sci Rep ; 6: 22524, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26934833

ABSTRACT

The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.

7.
ACS Nano ; 9(9): 9012-9, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26270248

ABSTRACT

The mechanism of the selective dispersion of single-walled carbon nanotubes (CNTs) by polyfluorene polymers is studied in this paper. Using extensive molecular dynamics simulations, it is demonstrated that diameter selectivity is the result of a competition between bundling of CNTs and adsorption of polymers on CNT surfaces. The preference for certain diameters corresponds to local minima of the binding energy difference between these two processes. Such minima in the diameter dependence occur due to abrupt changes in the CNT's coverage with polymers, and their calculated positions are in quantitative agreement with preferred diameters reported experimentally. The presented approach defines a theoretical framework for the further understanding and improvement of dispersion/extraction processes.

8.
Chemistry ; 20(10): 2804-11, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24500974

ABSTRACT

Bismetallocenes [Cp2 LuReCp2 ] and [Cp*2 LaReCp2 ] (Cp=cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) were prepared using different synthetic strategies. Salt metathesis-performed in aromatic hydrocarbons to avoid degradation pathways caused by THF-were identified as an attractive alternative to alkane elimination. Although alkane elimination is more attractive in the sense of its less elaborate workup, the rate of the reaction shows a strong dependence on the ionic radius of Ln(3+) (Ln=lanthanide) within a given ligand set. Steric hindrance can cause a dramatic decrease in the reaction rate of alkane elimination. In this case, salt metathesis should be considered the better alternative. Covalent bonding interactions between the Ln and transition-metal (TM) cations has been quantified on the basis of the delocalization index. Its magnitude lies within the range characteristic for bonds between transition metals. Secondary interactions were identified between carbon atoms of the Cp ligand of the transition metal and the Ln cation. Model calculations clearly indicated that the size of these interactions depends on the capability of the TM atom to act as an electron donor (i.e., a Lewis base). The consequences can even be derived from structural details. The observed clear dependency of the LuRu and interfragment LuC bonding on the THF coordination of the Lu atom points to a tunable Lewis acidity at the Ln site, which provides a method of significantly influencing the structure and the interfragment bonding.

9.
Nano Lett ; 14(2): 799-805, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24467408

ABSTRACT

Despite significant advances in the synthesis of nanostructures, our understanding of the growth mechanisms of nanowires and nanotubes grown from catalyst particles remains limited. In this study we demonstrate a straightforward route to grow coaxial amorphous B/BOx nanowires and BOx nanotubes using gold catalyst particles inside a transmission electron microscope at room temperature without the need of any specialized or expensive accessories. Exceedingly high growth rates (over 7 µm/min) are found for the coaxial nanowires, and this is attributed to the highly efficient diffusion of B species along the surface of a nanowire by electrostatic repulsion. On the other hand the O species are shown to be relevant to activate the gold catalysts, and this can occur through volatile O species. The technique could be further developed to study the growth of other nanostructures and holds promise for the room temperature growth of nanostructures as a whole.

10.
J Chem Theory Comput ; 8(3): 1153-63, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-26593373

ABSTRACT

We present the results of our recent parametrization of the boron-boron and boron-hydrogen interactions for the self-consistent charge density-functional-based tight-binding (SCC-DFTB) method. To evaluate the performance, we compare SCC-DFTB to full density functional theory (DFT) and wave-function-based semiempirical methods (AM1 and MNDO). Since the advantages of SCC-DFTB emerge especially for large systems, we calculated molecular systems of boranes and pure boron nanostructures. Computed bond lengths, bond angles, and vibrational frequencies are close to DFT predictions. We find that the proposed parametrization provides a transferable and balanced description of both finite and periodic systems.

12.
ACS Nano ; 5(6): 4997-5005, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21528877

ABSTRACT

The transport properties, work functions, electronic structure, and structural stability of boron nanotubes with different lattice structures, radii, and chiralities are investigated theoretically. As the atomic structure of boron nanotubes and the related sheets is still under debate, three probable structural classes (nanotubes derived from the α-sheet, the buckled triangular sheet, and the distorted hexagonal sheet) are considered. For comparison with recent transport measurements [J. Mater. Chem. 2010, 20, 2197], the intrinsic conductance of ideal nanotubes with large diameters (D ≈ 10 nm) is determined. All considered boron nanotubes are highly conductive, irrespective of their lattice structures and chiralities, and they have higher conductivities than carbon nanotubes. Furthermore, the work functions of the three sheets and the corresponding large-diameter nanotubes are determined. It is found that the value of the nanotubes obtained from the α-sheet agrees well with the experiment. This indirectly shows that the atomic structure of boron nanotubes is related to the α-sheet. The structural stability of nanotubes with diameters > 2 nm approaches that of the corresponding boron sheets, and α-sheet nanotubes are the most stable ones. However, for smaller diameters the relative stabilities change significantly, and for diameters < 0.5 nm the most stable structures are zigzag nanotubes of the buckled triangular sheet. For structures related to the distorted hexagonal sheet the most stable nanotube is discovered to have a diameter of 0.39 nm.


Subject(s)
Boron/chemistry , Nanotechnology/methods , Nanotubes/chemistry , Electric Conductivity , Electrochemistry/methods , Electronics , Electrons , Graphite/chemistry , Materials Testing , Nanotubes, Carbon/chemistry , Silicon/chemistry
13.
Nat Chem ; 2(9): 741-4, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20729893

ABSTRACT

Although metal-metal bonding is important in the chemistry of both solid-state intermetallic compounds and molecular species, the study of this bonding is limited by the compounds available and it is rarely possible to identify connections between these two areas. In this study, molecular intermetalloids [Ln(ReCp(2))(3)] (Ln = Sm, Lu and La) have been synthesized that contain lanthanoid metals bound only to transition metals. Although they are highly reactive species, such lanthanoid-core transition-metal-shell compounds can be stable in solution. They mimic the bonding situation of intermetallic compounds, as revealed by a direct comparison of molecular and solid state lanthanoid-transition metal bonding.


Subject(s)
Cyclopentanes/chemistry , Lanthanum/chemistry , Lutetium/chemistry , Organometallic Compounds/chemistry , Rhenium/chemistry , Samarium/chemistry , Cyclopentanes/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Organometallic Compounds/chemical synthesis , Quantum Theory
15.
J Comput Chem ; 31(12): 2273-85, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20340107

ABSTRACT

Electron localizability indicators based on the electron pair density ELI-D and ELIA Electron localizability indicators ELI-D and ELIA based on the electron pair density are studied for the correlated ground-state wavefunctions of N(2), O(2), F(2), and Ne(2) diatomics. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations to investigate the local effect of electron correlation on the extent of electron localizability in position space determined by the two indicators. The results are complemented by calculations of effective bond order, vibrational frequency, and Laplacian of the electron density at the bond midpoint. It turns out that for O(2) and F(2), the reliable topology of ELI-D is obtained only at the correlated level of theory.

16.
J Comput Chem ; 31(7): 1504-19, 2010 May.
Article in English | MEDLINE | ID: mdl-20020484

ABSTRACT

Electron localizability indicators based on the parallel-spin electron pair density (ELI-D) and the antiparallel-spin electron pair density (ELIA) are studied for the correlated ground-state wavefunctions of Li(2), Be(2), B(2), and C(2) diatomic molecules. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations to investigate the local effect of electron correlation on the extent of electron localizability in position space determined by the two functionals. The results are complemented by calculations of effective bond order, vibrational frequency, and Laplacian of the electron density at the bond midpoint. It turns out that for Li(2), B(2), and C(2) the reliable topology of ELI-D is obtained only at the correlated level of theory.

17.
J Comput Chem ; 29(8): 1198-207, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18069661

ABSTRACT

Electron localizability indicators based on the same-spin electron pair density and the opposite-spin electron pair density are studied for correlated wavefunctions of the argon atom. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations aiming at the understanding of the effect of local electron correlation when approaching the exact wavefunction. The populations of the three atomic shells of Ar atom in real space are calculated for each case.

18.
Chemistry ; 13(20): 5724-41, 2007.
Article in English | MEDLINE | ID: mdl-17458839

ABSTRACT

The novel functional electron localizability indicator is a useful tool for investigating chemical bonding in molecules and solids. In contrast to the traditional electron localization function (ELF), the electron localizability indicator is shown to be exactly decomposable into partial orbital contributions even though it displays at the single-determinantal level of theory the same topology as the ELF. This approach is generally valid for molecules and crystals at either the single-determinantal or the explicitly correlated level of theory. The advantages of the new approach are illustrated for the argon atom, homonuclear dimers N2 and F2, unsaturated hydrocarbons C2H4 and C6H6, and the transition-metal-containing molecules Sc(2)2+ and TiF4.

19.
Inorg Chem ; 45(23): 9160-2, 2006 Nov 13.
Article in English | MEDLINE | ID: mdl-17083208

ABSTRACT

Stoichiometric-deficient lithiation of (2,6-diisopropylphenyl)(4-methylpyridin-2-yl)amine and reaction with [(cod)PdCl2] (cod = 1,5-cyclooctadiene) yield a dimeric Pd complex. X-ray structural analysis of this complex reveals a very short Pd-Pd distance (2.429 A). Topological analysis of the electron density and the electron localization function from scalar relativistic density functional theory calculations clearly indicate a Pd(I)-Pd(I) sigma-bonding interaction, for which the corresponding occupied localized orbital can be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...