Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 82(12): 5349-56, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20507179

ABSTRACT

The strong dependence of separation behavior on ultrathin-layer chromatography (UTLC) stationary phase microstructure motivates continued UTLC plate design optimization efforts. We fabricated 4.6-5.3 mum thick normal phase silica UTLC stationary phases with several types of in-plane macropore anisotropies using the glancing angle deposition (GLAD) approach to engineering nanostructured thin films. The separation behaviors of two new media, isotropic vertical posts and anisotropic bladelike films, were compared to that of anisotropic chevron media. Channel-like structures within the anisotropic media introduced preferential mobile phase flow directions that could be exploited to give separation tracks diagonal to the development direction. Extraction of chromatograms from these angled tracks required the development of a new analytical approach that involved a commercial flatbed film scanner and custom numerical image analysis software. GLAD stationary phase performance was quantified using the Dimethyl Yellow dye separated from a lipophilic dye mixture over migration distances less than approximately 10 mm. The limits of detection were 10 +/- 4 ng for the vertical posts and 11 +/- 3 ng for the bladelike media. We obtained theoretical plate heights that varied with film microstructure between 12 and 28 mum. Unoptimized separation performance was comparable to that of other planar chromatography media. Macropore anisotropies engineered by GLAD may expand the capabilities of future UTLC stationary phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...